About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 781236, 7 pages
Research Article

Mixed Nanostructured Ti-W Oxides Films for Efficient Electrochromic Windows

1University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy Street, Cau Giay, Hanoi 10000, Vietnam
2Department of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, Canada H4B 1R6

Received 20 March 2012; Accepted 18 May 2012

Academic Editor: Jai Singh

Copyright © 2012 Nguyen Nang Dinh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


With the aim to enhance the electrochromic (EC) efficiency and electrochemical stability of electrochromic devices (ECD), mixed nanostructured TiO2/WO3 films were prepared by an electrochemical deposition method with the purpose of adding WO3 nanoparticles to porous nanocrystalline doctor-blade TiO2 (nc-TiO2) films. The results of the characterization of electrochromic properties in 1 M LiClO4 + propylene carbonate (LiClO4 + PC) of both the nc-TiO2/F-doped tin oxide (FTO) and WO3/TiO2/FTO configurations showed the reversible coloration and bleaching of the ECDs. The response time of the ECD coloration of WO3/TiO2/FTO was found to be as small as 2 sec, and its coloration efficiency (CE) as high as 35.7 cm2 × C−1. By inserting WO3 nanoparticles into the porous TiO2 structures, WO3/TiO2 heterojunctions were formed in the films, consequently enabling both the CE and electrochemical stability of the working electrodes to be considerably enhanced. Since a large-area WO3/TiO2 can be prepared by the doctor-blade technique followed by the electrochemical deposition process, mixed nanostructured Ti-W oxides electrodes constitute a good candidate for smart window applications, taking advantage of the excellent coloration and stability properties as well as the simple and economical fabrication process involved.