About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 819403, 6 pages
http://dx.doi.org/10.1155/2012/819403
Research Article

Preparation and Characterization of Alumina Nanoparticles in Deionized Water Using Laser Ablation Technique

1Applied Nanotechnology Laboratory (ANT Lab), Department of Physics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
2Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

Received 9 August 2012; Accepted 23 October 2012

Academic Editor: Jian Wei

Copyright © 2012 Veeradate Piriyawong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Al2O3 nanoparticles were synthesized using laser ablation of an aluminum (Al) target in deionized water. Nd:YAG laser, emitted the light at a wavelength of 1064 nm, was used as a light source. The laser ablation was carried out at different energies of 1, 3, and 5 J. The structure of ablated Al particles suspended in deionized water was investigated using X-ray diffraction (XRD). The XRD patterns revealed that the ablated Al particles transformed into γ-Al2O3. The morphology of nanoparticles was investigated by field emission scanning electron microscopy (FE-SEM). The FE-SEM images showed that most of the nanoparticles obtained from all the ablated laser energies have spherical shape with a particle size of less than 100 nm. Furthermore, it was observed that the particle size increased with increasing the laser energy. The absorption spectra of Al2O3 nanoparticles suspended in deionized water were recorded at room temperature using UV-visible spectroscopy. The absorption spectra show a strong peak at 210 nmarising from the presence of Al2O3 nanoparticles. The results on absorption spectra are in good agreement with those investigated by XRD which confirmed the formation of Al2O3 nanoparticles during the laser ablation of Al target in deionized water.