About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 825060, 7 pages
http://dx.doi.org/10.1155/2012/825060
Research Article

Gold Nanorod-Mediated Photothermal Modulation for Localized Ablation of Cancer Cells

1Department of Biomedical Engineering, Yonsei University, 234 Maeji, Heungup, Gangwondo, Wonju 220-710, Republic of Korea
2Department of Radiology, College of Medicine, Yonsei University, Sinchon, Seodaemun, Seoul 120-752, Republic of Korea
3Department of Chemical and Biomolecular Engineering, Yonsei University, Sinchon, Seodaemun, Seoul 120-749, Republic of Korea
4YUHS-KRIBB Medical Convergence Research Institute, Sinchon, Seodaemun, Seoul 120-752, Republic of Korea
5Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University Health System, Seoul 120-752, Republic of Korea
6Severance Biomedical Science Institute (SBSI), Shinchon, Seodaemun, Seoul 120-752, Republic of Korea

Received 15 August 2012; Accepted 20 September 2012

Academic Editor: Haiya Li

Copyright © 2012 Yoochan Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Yang, J. Lee, J. Kang et al., “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Advanced Materials, vol. 21, no. 43, pp. 4339–4342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Weissleder, “A clearer vision for in vivo imaging,” Nature Biotechnology, vol. 19, no. 4, pp. 316–317, 2001. View at Scopus
  3. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine, vol. 2, no. 5, pp. 681–693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Park, J. Yang, J. Lee, S. Haam, I. H. Choi, and K. H. Yoo, “Multifunctional nanoparticles for combined doxorubicin and photothermal treatments,” ACS Nano, vol. 3, no. 10, pp. 2919–2926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today, vol. 2, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Chakravarty, R. Marches, N. S. Zimmerman et al., “Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 25, pp. 8697–8702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science, vol. 23, no. 3, pp. 217–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H.-C. Huang, K. Rege, and J. J. Heys, “Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods,” ACS Nano, vol. 4, no. 5, pp. 2892–2900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” International Reviews in Physical Chemistry, vol. 19, no. 3, pp. 409–453, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Choi, J. Yang, J. Choi et al., “Thiolated dextran-coated gold nanorods for photothermal ablation of inflammatory macrophages,” Langmuir, vol. 26, no. 22, pp. 17520–17527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yang, K. Eom, E. K. Lim et al., “In situ detection of live cancer cells by using bioprobes based on Au nanoparticles,” Langmuir, vol. 24, no. 21, pp. 12112–12115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Choi, J. Yang, D. Bang, et al., “Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging,” Small, vol. 8, no. 5, pp. 746–753, 2012. View at Publisher · View at Google Scholar
  13. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” The Journal of Physical Chemistry B, vol. 103, no. 16, pp. 3073–3077, 1999. View at Scopus
  14. F.-Y. Cheng, C.-T. Chen, and C.-S. Yeh, “Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods,” Nanotechnology, vol. 20, no. 42, Article ID 425104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, “Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects,” Small, vol. 5, no. 6, pp. 701–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. B. Carpin, L. R. Bickford, G. Agollah et al., “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Research and Treatment, vol. 125, no. 1, pp. 27–34, 2011. View at Publisher · View at Google Scholar · View at Scopus