About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 831263, 10 pages
http://dx.doi.org/10.1155/2012/831263
Research Article

Nanostructured Surfaces to Target and Kill Circulating Tumor Cells While Repelling Leukocytes

Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA

Received 19 November 2012; Accepted 5 December 2012

Academic Editor: Haiyan Li

Copyright © 2012 Michael J. Mitchell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science, vol. 331, no. 6024, pp. 1559–1564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Hughes and M. R. King, “Nanobiotechnology for the capture and manipulation of circulating tumor cells,” WIREs Nanomedicine and Nanobiotechnology, vol. 4, no. 3, pp. 291–309, 2011.
  3. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. F. Chambers, G. N. Naumov, S. A. Vantyghem, and A. B. Tuck, “Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency,” Breast Cancer Research, vol. 2, no. 6, pp. 400–407, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. I. C. MacDonald, A. C. Groom, and A. F. Chambers, “Cancer spread and micrometastasis development: quantitative approaches for in vivo models,” BioEssays, vol. 24, no. 10, pp. 885–893, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Young, R. F. Ozols, and C. E. Myers, “The anthracycline antineoplastic drugs,” The New England Journal of Medicine, vol. 305, no. 3, pp. 139–153, 1981. View at Scopus
  7. J. Bouma, J. H. Beijnen, A. Bult, and W. J. M. Underberg, “Anthracycline antitumour agents. A review of physicochemical, analytical and stability properties,” Pharmaceutisch Weekblad, vol. 8, no. 3, pp. 109–133, 1986. View at Scopus
  8. N. Osheroff, A. H. Corbett, and M. J. Robinson, “Mechanism of action of topoisomerase II-targeted antineoplastic drugs,” Advances in Pharmacology, vol. 29, pp. 105–126, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. L. H. Reddy, “Drug delivery to tumours: recent strategies,” Journal of Pharmacy and Pharmacology, vol. 57, no. 10, pp. 1231–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Fritze, F. Hens, A. Kimpfler, R. Schubert, and R. Peschka-Süss, “Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient,” Biochimica et Biophysica Acta, vol. 1758, no. 10, pp. 1633–1640, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Saad, O. B. Garbuzenko, E. Ber et al., “Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?” Journal of Controlled Release, vol. 130, no. 2, pp. 107–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. H. Herman, A. Rahman, and V. J. Ferrans, “Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation,” Cancer Research, vol. 43, no. 11, pp. 5427–5432, 1983. View at Scopus
  13. R. Krishna, N. McIntosh, K. W. Riggs, and L. D. Mayer, “Doxorubicin encapsulated in sterically stabilized liposomes exhibits renal and biliary clearance properties that are independent of valspodar (PSC 833) under conditions that significantly inhibit nonencapsulated drug excretion,” Clinical Cancer Research, vol. 5, no. 10, pp. 2939–2947, 1999. View at Scopus
  14. A. Gabizon, H. Shmeeda, and Y. Barenholz, “Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies,” Clinical Pharmacokinetics, vol. 42, no. 5, pp. 419–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. D. Han, A. Lee, T. Hwang et al., “Enhanced circulation time and antitumor activity of doxorubicin by comblike polymer-incorporated liposomes,” Journal of Controlled Release, vol. 120, no. 3, pp. 161–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Čeh, M. Winterhalter, P. M. Frederik, J. J. Vallner, and D. D. Lasic, “Stealth liposomes: from theory to product,” Advanced Drug Delivery Reviews, vol. 24, no. 2-3, pp. 165–177, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. W. J. Allard, J. Matera, M. C. Miller et al., “Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases,” Clinical Cancer Research, vol. 10, no. 20, pp. 6897–6904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Maheswaran and D. A. Haber, “Circulating tumor cells: a window into cancer biology and metastasis,” Current Opinion in Genetics and Development, vol. 20, no. 1, pp. 96–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. S. Kansas, “Selectins and their ligands: current concepts and controversies,” Blood, vol. 88, no. 9, pp. 3259–3287, 1996. View at Scopus
  20. J. Li and M. R. King, “Adhesion receptors as therapeutic targets for circulating tumor cells,” Frontiers in Oncology, vol. 2, article 79, 2012. View at Publisher · View at Google Scholar
  21. H. Läubli and L. Borsig, “Selectins promote tumor metastasis,” Seminars in Cancer Biology, vol. 20, no. 3, pp. 169–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Krause and G. A. Turner, “Are selectins involved in metastasis?” Clinical and Experimental Metastasis, vol. 17, no. 3, pp. 183–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Gout, P. L. Tremblay, and J. Huot, “Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis,” Clinical and Experimental Metastasis, vol. 25, no. 4, pp. 335–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. A. Springer, “Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm,” Cell, vol. 76, no. 2, pp. 301–314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Mitchell and M. R. King, “Shear-induced resistance to neutrophil activation via the formyl peptide receptor,” Biophysical Journal, vol. 102, no. 8, pp. 1804–1814, 2012.
  26. M. J. Mitchell, C. S. Chen, V. Ponmudi, A. D. Hughes, and M. R. King, “E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells,” Journal of Controlled Release, vol. 160, no. 3, pp. 609–617, 2012. View at Publisher · View at Google Scholar
  27. S. Amselem, R. Cohen, S. Druckmann et al., “Preparation and characterization of liposomal doxorubicin for human use,” Journal of Liposome Research, vol. 2, no. 1, pp. 93–123, 1992. View at Scopus
  28. G. Haran, R. Cohen, L. K. Bar, and Y. Barenholz, “Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases,” Biochimica et Biophysica Acta, vol. 1151, no. 2, pp. 201–215, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. A. N. Lukyanov, T. A. Elbayoumi, A. R. Chakilam, and V. P. Torchilin, “Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody,” Journal of Controlled Release, vol. 100, no. 1, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. H. Myung, K. A. Gajjar, R. M. Pearson, C. A. Launiere, D. T. Eddington, and S. Hong, “Direct measurements on CD24-mediated rolling of human breast cancer MCF-7 cells on E-selectin,” Analytical Chemistry, vol. 83, no. 3, pp. 1078–1083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Huang and M. R. King, “An immobilized nanoparticle-based platform for efficient gene knockdown of targeted cells in the circulation,” Gene Therapy, vol. 16, no. 10, pp. 1271–1282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Lee, J. B. Schultz, P. A. Knauf, and M. R. King, “Mechanical shedding of L-selectin from the neutrophil surface during rolling on sialyl lewis x under flow,” The Journal of Biological Chemistry, vol. 282, no. 7, pp. 4812–4820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Yin, K. Rana, V. Ponmudi, and M. R. King, “Knockdown of fucosyltransferase III disrupts the adhesion of circulating cancer cells to E-selectin without affecting hematopoietic cell adhesion,” Carbohydrate Research, vol. 345, no. 16, pp. 2334–2342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. B. Kim and I. H. Sarelius, “Distributions of wall shear stress in venular convergences of mouse cremaster muscle,” Microcirculation, vol. 10, no. 2, pp. 167–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Rana, C. A. Reinhart-King, and M. R. King, “Inducing apoptosis in rolling cancer cells: a combined therapy with aspirin and immobilized TRAIL and E-selectin,” Molecular Pharmaceutics, vol. 9, Article ID 120702, 2012.
  36. A. D. Hughes and M. R. King, “Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells,” Langmuir, vol. 26, no. 14, pp. 12155–12164, 2010. View at Publisher · View at Google Scholar
  37. B. T. Greene, A. D. Hughes, and M. R. King, “Circulating tumor cells: the substrate of personalized medicine?” Frontiers in Oncology, vol. 2, article 69, 2012.
  38. A. D. Hughes, J. Mattison, L. T. Western, J. D. Powderly, B. T. Greene, and M. R. King, “Microtube device for selectin-mediated capture of viable circulating tumor cells from blood,” Clinical Chemistry, vol. 58, no. 5, pp. 846–853, 2012. View at Publisher · View at Google Scholar
  39. C. G. Begley, A. F. Lopez, N. A. Nicola, et al., “Purified colony-stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony-stimulating factors,” Blood, vol. 68, no. 1, pp. 162–166, 1986. View at Scopus