About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 848274, 7 pages
http://dx.doi.org/10.1155/2012/848274
Research Article

Effective Red Compensation of  :  Phosphor by Codoping Ions and Its Energy Transfer

College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu, Nanjing 210009, China

Received 15 August 2012; Accepted 28 September 2012

Academic Editor: Su Chen

Copyright © 2012 Le Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mn2+ ions codoped Sr2SiO4 : Dy3+ phosphors were prepared by the solid-state reaction method using NH4Cl as the flux. Their phase compositions, photoluminescence properties, and the energy transfer process were systematically investigated. All Mn/Dy codoped powders were ′-Sr2SiO4. The codoping concentration range of Mn2+ was  mol% to keep the structure undamaged. The broad red emission of Mn2+ centered at 647 nm in Sr2SiO4 : Mn, Dy powders, which effectively compensated the red emission of Sr2SiO4 : Dy3+ phosphor. The CIE chromaticity coordinates dramatically changed from (0.310, 0.340) to (0.332, 0.326) due to the red enhancement via the energy transfer from Dy3+ to Mn2+. This energy transfer is realized by the exchange interaction. But the luminescence quenching of Sr2SiO4 : Dy, Mn phosphor was mainly caused by the electric multipoles interaction. The concentration optimized (Sr0.96, Mn0.02, Dy0.02)2SiO4 phosphor with high and almost pure white emission has great potential to act as a single-matrix white phosphor for white LEDs.