About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 848274, 7 pages
http://dx.doi.org/10.1155/2012/848274
Research Article

Effective Red Compensation of  :  Phosphor by Codoping Ions and Its Energy Transfer

College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu, Nanjing 210009, China

Received 15 August 2012; Accepted 28 September 2012

Academic Editor: Su Chen

Copyright © 2012 Le Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. V. Steele, “The story of a new light source,” Nature Photonics, vol. 1, no. 1, pp. 25–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Narukawa, J. Narita, T. Sakamoto et al., “Recent progress of high efficiency white LEDs,” Physica Status Solidi A, vol. 204, no. 6, pp. 2087–2093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Kim, P. E. Jeon, Y. H. Park et al., “White-light generation through ultraviolet-emitting diode and white-emitting phosphor,” Applied Physics Letters, vol. 85, no. 17, pp. 3696–3698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. B. Wu, D. W. Zhang, S. Z. Shang, Y. M. Zhu, S. L. Zhuang, and J. Xu, “Developing quantum dot phosphor-based light-emitting diodes for aviation lighting applications,” Journal of Nanomaterials, vol. 2012, Article ID 629157, 5 pages, 2012. View at Publisher · View at Google Scholar
  5. M. A. Greenwood, “Phosphor-coated LED converts blue light to white,” Photonics Spectra, vol. 42, no. 6, article 100, 2008. View at Scopus
  6. G. Liu, S. Zhang, X. Dong, and J. Wang, “Solvothermal synthesis of Gd2O3 : Eu3+ luminescent nanowires,” Journal of Nanomaterials, vol. 2010, Article ID 365079, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. S. Ciobanu, S. L. Iconaru, F. Massuyeau, L. V. Constantin, A. Costescu, and D. Predoi, “Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders,” Journal of Nanomaterials, vol. 2012, Article ID 942801, 9 pages, 2012. View at Publisher · View at Google Scholar
  8. C. K. Chang and T. M. Chen, “Sr3B2O6: Ce3+, Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes,” Applied Physics Letters, vol. 91, no. 8, Article ID 081902, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Kim, P. E. Jeonny, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Applied Physics Letters, vol. 84, no. 15, pp. 2931–2933, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. L. Wang, K. W. Cheah, H. L. Tam, and M. L. Gong, “Near-ultraviolet light excited deep blue-emitting phosphor for solid-state lighting,” Journal of Alloys and Compounds, vol. 482, no. 1-2, pp. 437–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Johnson and J. A. Simmons, “Materials for solid state lighting,” in Proceedings of the Materials and Devices for Optoelectronics and Microphotonics, pp. 53–64, San Francisco, Calif, USA, April 2002. View at Scopus
  12. A. A. Setlur, J. J. Shiang, and U. Happek, “Eu2+–Mn2+ phosphor saturation in 5 mm light emitting diode lamps,” Applied Physics Letters, vol. 92, no. 8, Article ID 081104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Lee, J. H. Park, S. M. Son, J. S. Kim, and H. L. Park, “White-light-emitting phosphor: CaMgSi2O6:Eu2+, Mn2+ and its related properties with blending,” Applied Physics Letters, vol. 89, no. 22, Article ID 221916, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Cavalli, M. Bettinelli, A. Belletti, and A. Speghini, “Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3+,” Journal of Alloys and Compounds, vol. 341, no. 1-2, pp. 107–110, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. G. S. Raghuvanshi, H. D. Bist, and H. C. Kandpal, “Luminescence characteristics of Dy3+ in different host matrices,” Journal of Physics and Chemistry of Solids, vol. 43, no. 8, pp. 781–783, 1982. View at Scopus
  16. L. Zhang, Z. Lu, H. Yang, P. Han, N. Xu, and Q. Zhang, “Preparation of Dy3+-activated strontium orthosilicate (Sr2SiO4:Dy3+) phosphors and its photoluminescent properties,” Journal of Alloys and Compounds, vol. 512, no. 1, pp. 5–11, 2012. View at Publisher · View at Google Scholar
  17. L. Zhang, P. Han, Z. Lu et al., “Enhanced luminescence of Sr2SiO4:Dy3+ by sensitization (Ce3+/Bi3+) and its composition-induced phase transition,” Journal of Alloys and Compounds, vol. 541, pp. 54–59, 2012. View at Publisher · View at Google Scholar
  18. L. Zhang, Z. Lu, P. Han, and Q. Zhang, “Action mechanism of NH4Cl flux used to synthesize Sr2SiO4:Dy3+ phosphor by solid-state reactionmethod,” Journal of The American Ceramic Society. In press. View at Publisher · View at Google Scholar
  19. T. Moon, G. Y. Hong, H. C. Lee et al., “Effects of Eu2+ co-doping on vuv photoluminescence properties of BaMgAl10O17: Mn2+ phosphors for plasma display panels,” Electrochemical and Solid-State Letters, vol. 12, no. 7, pp. J61–J63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lin, M. Yin, C. Shi, and W. Zhang, “Luminescence properties of a new red long-lasting phosphor: Mg2SiO4:Dy3+, Mn2+,” Journal of Alloys and Compounds, vol. 455, no. 1-2, pp. 327–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. L. Yuan, Y. X. Yang, X. H. Zhang et al., “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2—new red phosphor for white LEDs,” Optics Letters, vol. 33, no. 23, pp. 2865–2867, 2008. View at Scopus
  22. J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes,” Solid State Communications, vol. 135, no. 1-2, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Zhang, Fundamentals of Inorganic Materials Science, East China University of Science and Technology Press, Shanghai, China, 2006.
  24. C. R. Ronda and T. Amrein, “Evidence for exchange-induced luminescence in Zn2SiO4: Mn,” Journal of Luminescence, vol. 69, no. 5-6, pp. 245–248, 1996. View at Scopus
  25. L. G. van Uitert and L. F. Johnson, “Energy transfer between rare-earth ions,” The Journal of Chemical Physics, vol. 44, no. 9, pp. 3514–3522, 1966. View at Scopus
  26. L. G. van Uitert, E. F. Dearborn, and H. M. Marcos, “Mechanisms of energy transfer involving trivalent Tb and Eu,” Applied Physics Letters, vol. 9, no. 7, pp. 255–257, 1966. View at Publisher · View at Google Scholar · View at Scopus
  27. L. G. V. Uitert, “Characterization of energy transfer interactions between rare earth ions,” Journal of the Electrochemical Society, vol. 114, no. 10, pp. 1048–1053, 1967. View at Publisher · View at Google Scholar
  28. S. Huang and L. Lou, “Concentration dependence of sensitizer fluorescence intensity in enery transfer,” Chinese Journal of Luminescence, vol. 11, no. 1, pp. 1–7, 1990.