About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 854602, 6 pages
http://dx.doi.org/10.1155/2012/854602
Research Article

Small-Sized Flat-Tip CNT Emitters for Miniaturized X-Ray Tubes

1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
2Particla Co. Ltd., Daejeon 305-701, Republic of Korea

Received 18 October 2012; Accepted 7 December 2012

Academic Editor: Yue Li

Copyright © 2012 Hyun Jin Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A nanotube-based field-emission flat panel display,” Applied Physics Letters, vol. 72, no. 22, pp. 2912–2913, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. R. G. Ding, G. Q. Lu, Z. F. Yan, and M. A. Wilson, “Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage,” Journal of Nanoscience and Nanotechnology, vol. 1, no. 1, pp. 7–29, 2001.
  4. Y. Qin, M. Hu, H. Li, Z. Zhang, and Q. Zou, “Preparation and field emission properties of carbon nanotubes cold cathode using melting Ag nano-particles as binder,” Applied Surface Science, vol. 253, no. 8, pp. 4021–4024, 2007.
  5. L. Wang, Z. Sun, T. Chen, and W. Que, “Growth temperature effect on field emission properties of printable carbon nanotubes cathode,” Solid-State Electronics, vol. 50, no. 5, pp. 800–804, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, and I. N. Lin, “Characteristics of flat panel display using carbon nanotube as electro emitters,” Diamond Related Materials, vol. 9, no. 3–6, pp. 1270–1274, 2000.
  7. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes,” Applied Physics Letters, vol. 70, no. 11, pp. 1480–1482, 1997. View at Scopus
  8. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source,” Science, vol. 270, no. 5239, pp. 1179–1180, 1995.
  9. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, no. 5401, pp. 512–514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Xu and G. R. Brandes, “A method for fabricating large-area, patterned, carbon nanotube field emitters,” Applied Physics Letters, vol. 74, no. 17, pp. 2549–2551, 1999.
  11. Z. F. Ren and Z. P. Huang, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, no. 5391, pp. 1105–1107, 1998. View at Scopus
  12. G. Gutman, E. Strumban, E. Sozontov, and K. Jenrow, “X-ray scalpel—a new device for targeted x-ray brachytherapy and stereotactic radiosurgery,” Physics in Medicine and Biology, vol. 52, no. 6, pp. 1757–1770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dickler, “Xoft Axxent electronic brachytherapy—a new device for delivering brachytherapy to the breast,” Nature Reviews Clinical Oncology, vol. 6, no. 6, pp. 138–142, 2009.
  14. L. N. Koppel and J. R. Marshall, “A miniature metal-ceramic x-ray source for spacecraft instrumentation,” Review of Scientific Instruments, vol. 69, no. 4, pp. 1893–1897, 1998. View at Scopus
  15. F. Schneider, H. Fuchs, F. Lorenz et al., “A novel device for intravaginal electronic brachytherapy,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 4, pp. 1298–1305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Rivard, S. D. Davis, L. A. DeWerd, T. W. Rusch, and S. Axelrod, “Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source,” Medical Physics, vol. 33, no. 11, pp. 4020–4032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Yanch and K. J. Harte, “Monte Carlo simulation of a miniature, radiosurgery x-ray tube using the ITS 3.0 coupled electron-photon transport code,” Medical Physics, vol. 23, no. 9, pp. 1551–1558, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lovoi and J. F. Asmus, “An X-Ray microprobe for In-Situ stone and wood characterization,” in Proceedings of the Lasers in the Conservation of Artworks, vol. 100, pp. 353–356, Springer, Berlin, Germany, 2005.
  19. S. H. Heo, A. Ihsan, and S. O. Cho, “Transmission-type microfocus x-ray tube using carbon nanotube field emitters,” Applied Physics Letters, vol. 90, no. 18, Article ID 183109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Sakai, A. Haga, S. Sugita et al., “Electron gun using carbon-nanofiber field emitter,” Review of Scientific Instruments, vol. 78, no. 1, Article ID 013305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Chen, D. T. Shaw, and L. Guo, “Field emission of different oriented carbon nanotubes,” Applied Physics Letters, vol. 76, no. 17, pp. 2469–2471, 2000. View at Scopus
  22. S. K. Srivastava, V. D. Vankar, and V. Kumar, “Excellent field emission properties of short conical carbon nanotubes prepared by microwave plasma enhanced CVD process,” Nanoscale Research Letters, vol. 3, no. 1, pp. 25–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Gao, G. Z. Yue, Q. Qiu et al., “Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition,” Advanced Materials, vol. 13, no. 23, pp. 1770–1773, 2001.
  24. J. M. Bonard, C. Kinke, K. A. Dean, and B. F. Coll, “Degradation and failure of carbon nanotube field emitters,” Physical Review B, vol. 67, no. 11, pp. 115406–115415, 2003.
  25. J. C. She, N. S. Xu, S. Z. Deng et al., “Vacuum breakdown of carbon-nanotube field emitters on a silicon tip,” Applied Physics Letters, vol. 83, no. 13, pp. 2671–2673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. X. H. Liang, S. Z. Deng, N. S. Xu, Jun Chen, N. Y. Huang, and J. C. She, “Noncatastrophic and catastrophic vacuum breakdowns of carbon nanotube film under direct current conditions,” Journal of Applied Physics, vol. 101, no. 6, Article ID 063309, 2007.
  27. N. Y. Huang, J. C. She, J. Chen, et al., “Mechanism responsible for initiating carbon nanotube vacuum breakdown,” Physical Review Letters, vol. 93, no. 7, Article ID 075501, 2004.
  28. W. B. Herrmannsfeldt and G. A. Herrmannsfeldt, EGN Electron Optics Program, SLAC, Stanford, Calif, USA, 1993.
  29. J. L. Kwo, C. C. Tsou, M. Yokoyama et al., “Field emission characteristics of carbon nanotube emitters synthesized by arc discharge,” Journal of Vacuum Science and Technology B, vol. 19, no. 1, pp. 23–26, 2001. View at Publisher · View at Google Scholar · View at Scopus