About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 905157, 19 pages
http://dx.doi.org/10.1155/2012/905157
Review Article

3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries

1Department of Chemistry, Harbin Institute of Technology, Harbin, Heilongjang 150001, China
2Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjang 150001, China
3State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjang 150001, China

Received 17 October 2012; Accepted 3 December 2012

Academic Editor: Jianmin Ma

Copyright © 2012 Xin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nature Materials, vol. 4, no. 5, pp. 366–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Armand and J. M. Tarascon, “Building better batteries,” Nature, vol. 451, no. 7179, pp. 652–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chemistry of Materials, vol. 22, pp. 587–603, 2009.
  4. J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Annual Energy Outlook, 2010, http://www.eia.gov/ieo.
  6. F. Cheng, J. Liang, Z. Tao, and J. Chen, “Functional materials for rechargeable batteries,” Advanced Materials, vol. 23, no. 15, pp. 1695–1715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, and H. J. Sohn, “Prospective materials and applications for Li secondary batteries,” Energy and Environmental Science, vol. 4, no. 6, pp. 1986–2002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Whittingham, “Lithium batteries and cathode materials,” Chemical Reviews, vol. 104, no. 10, pp. 4271–4301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Okubo, E. Hosono, J. Kim et al., “Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode,” Journal of the American Chemical Society, vol. 129, no. 23, pp. 7444–7452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, “Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density,” Nano Letters, vol. 9, no. 3, pp. 1045–1051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey, and M. M. Thackeray, “Synthesis, characterization and electrochemistry of lithium battery electrodes: XLi2MnO3·(1x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7),” Chemistry of Materials, vol. 20, no. 19, pp. 6095–6106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yang, X. Zhou, J. Zhang, and Z. Liu, “Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries,” Journal of Materials Chemistry, vol. 20, no. 37, pp. 8086–8091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Li, S. Pang, L. Jiang, Z. Guo, and Z. Zhang, “Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries,” Journal of Physical Chemistry B, vol. 110, no. 19, pp. 9383–9386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. K. Song, K. T. Lee, M. G. Kim, L. F. Nazar, and J. Cho, “Recent progress in nanostructured cathode materials for lithium secondary batteries,” Advanced Functional Materials, vol. 20, no. 22, pp. 3818–3834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. L. Ellis, K. T. Lee, and L. F. Nazar, “Positive electrode materials for Li-Ion and Li-batteries,” Chemistry of Materials, vol. 22, no. 3, pp. 691–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. N. A. Kaskhedikar and J. Maier, “Lithium storage in carbon nanostructures,” Advanced Materials, vol. 21, no. 25-26, pp. 2664–2680, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kim, M. Seo, M. H. Park, and J. Cho, “A critical size of silicon nano-anodes for lithium rechargeable batteries,” Angewandte Chemie, vol. 49, no. 12, pp. 2146–2149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hassoun, S. Panero, P. Simon, P. L. Taberna, and B. Scrosati, “High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries,” Advanced Materials, vol. 19, no. 12, pp. 1632–1635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, “Li-alloy based anode materials for Li secondary batteries,” Chemical Society Reviews, vol. 39, no. 8, pp. 3115–3141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, vol. 407, no. 6803, pp. 496–499, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. I. A. Courtney and J. R. Dahn, “Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites,” Journal of the Electrochemical Society, vol. 144, no. 6, pp. 2045–2052, 1997. View at Scopus
  22. I. Exnar, L. Kavan, S. Y. Huang, and M. Grätzel, “Novel 2V rocking-chair lithium battery based on nano-crystalline titanium dioxide,” Journal of Power Sources, vol. 68, no. 2, pp. 720–722, 1997. View at Scopus
  23. J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacín, “Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions,” Advanced Materials, vol. 22, no. 35, pp. E170–E192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries,” Energy and Environmental Science, vol. 4, no. 8, pp. 2682–2689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. G. Bruce, B. Scrosati, and J. M. Tarascon, “Nanomaterials for rechargeable lithium batteries,” Angewandte Chemie, vol. 47, no. 16, pp. 2930–2946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Cheng, Z. Tao, J. Liang, and J. Chen, “Template-directed materials for rechargeable lithium-ion batteries,” Chemistry of Materials, vol. 20, no. 3, pp. 667–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, “Three-dimensional battery architectures,” Chemical Reviews, vol. 104, no. 10, pp. 4463–4492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. X. W. Lou, L. A. Archer, and Z. Yang, “Hollow micro-/nanostructures: synthesis and applications,” Advanced Materials, vol. 20, no. 21, pp. 3987–4019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. K. Sun, S. T. Myung, H. S. Shin, Y. C. Bae, and C. S. Yoon, “Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries,” Journal of Physical Chemistry B, vol. 110, no. 13, pp. 6810–6815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. W. Su, Y. Jing, and Z. Zhou, “Li ion battery materials with core-shell nanostructures,” Nanoscale, vol. 3, no. 10, pp. 3967–3983, 2011.
  31. R. Liu, J. Duay, and S. B. Lee, “Heterogeneous nanostructured electrode materials for electrochemical energy storage,” Chemical Communications, vol. 47, no. 5, pp. 1384–1404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. R. Rolison, J. W. Long, J. C. Lytle et al., “Multifunctional 3D nanoarchitectures for energy storage and conversion,” Chemical Society Reviews, vol. 38, no. 1, pp. 226–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Meethong, H. Y. S. Huang, W. C. Carter, and Y. M. Chiang, “Size-dependent lithium miscibility gap in nanoscale Li 1-xFePO4,” Electrochemical and Solid-State Letters, vol. 10, no. 5, pp. 134–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. L. J. Fu, H. Liu, C. Li et al., “Surface modifications of electrode materials for lithium ion batteries,” Solid State Sciences, vol. 8, no. 2, pp. 113–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Fang, J. G. Duh, and S. R. Sheen, “Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating,” Journal of the Electrochemical Society, vol. 152, no. 9, pp. A1701–A1706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chemical Reviews, vol. 110, no. 1, pp. 527–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. K. Chan, H. Peng, G. Liu et al., “High-performance lithium battery anodes using silicon nanowires,” Nature Nanotechnology, vol. 3, no. 1, pp. 31–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Liu, G. Cao, Z. Yang et al., “Oriented nanostructures for energy conversion and storage.,” ChemSusChem, vol. 1, no. 8-9, pp. 676–697, 2008. View at Scopus
  39. C. Liu, F. Li, M. Lai-Peng, and H. M. Cheng, “Advanced materials for energy storage,” Advanced Materials, vol. 22, no. 8, pp. E28–E62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Jiang, Y. Li, J. Liu, and X. Huang, “Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes,” Nanoscale, vol. 3, no. 1, pp. 45–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Advanced Functional Materials, vol. 13, no. 1, pp. 9–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, “Study of the filamentary growth of silicon crystals from the vapor,” Journal of Applied Physics, vol. 35, no. 10, pp. 2993–3000, 1964. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Sekar, S. H. Kim, A. Umar, and Y. B. Hahn, “Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders,” Journal of Crystal Growth, vol. 277, no. 1–4, pp. 471–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Yan, A. Sumboja, E. Khoo, and P. S. Lee, “V2O5 loaded on SnO2 nanowires for high rate Li ion batteries,” Advanced Materials, vol. 23, no. 6, pp. 746–750, 2010.
  45. C. K. Chan, H. Peng, R. D. Twesten, K. Jarausch, X. F. Zhang, and Y. Cui, “Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons,” Nano Letters, vol. 7, no. 2, pp. 490–495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. D. Fleischauer, J. Li, and M. J. Brett, “Columnar thin films for three-dimensional microbatteries,” Journal of the Electrochemical Society, vol. 156, no. 1, pp. A33–A36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. D. Ko, J. G. Kang, J. G. Park, S. Lee, and D. W. Kim, “Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries,” Nanotechnology, vol. 20, no. 45, Article ID 455701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Zheng, Y. Xu, D. Jin, and Y. Xie, “Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application,” Journal of Materials Chemistry, vol. 20, no. 34, pp. 7135–7143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Wang, H. Xia, L. Lu, and J. Lin, “Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4,” ACS Nano, vol. 4, no. 3, pp. 1425–1432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Song, S. Qin, Y. Zhang, W. Gao, and J. Liu, “Large-scale porous hematite nanorod arrays: direct growth on titanium foil and reversible lithium storage,” Journal of Physical Chemistry C, vol. 114, no. 49, pp. 21158–21164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. E. Greene, M. Law, D. H. Tan et al., “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Letters, vol. 5, no. 7, pp. 1231–1236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, “A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays,” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2378–2379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. L. E. Greene, M. Law, J. Goldberger et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angewandte Chemie, vol. 42, no. 26, pp. 3031–3034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Li, B. Tan, and Y. Wu, “Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability,” Nano Letters, vol. 8, no. 1, pp. 265–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials, vol. 23, no. 2, pp. 285–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Applied Physics Letters, vol. 93, no. 13, Article ID 133109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Zhang, X. Wen, and S. Yang, “Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films,” Inorganic Chemistry, vol. 42, no. 16, pp. 5005–5014, 2003. View at Scopus
  58. J. Y. Xiang, J. P. Tu, X. H. Huang, and Y. Z. Yang, “A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries,” Journal of Solid State Electrochemistry, vol. 12, no. 7-8, pp. 941–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. F. S. Ke, L. Huang, G. Z. Wei et al., “One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance,” Electrochimica Acta, vol. 54, no. 24, pp. 5825–5829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. C. H. Lai, K. W. Huang, J. H. Cheng et al., “Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications,” Journal of Materials Chemistry, vol. 19, no. 39, pp. 7277–7283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, and C. A. Grimes, “High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping,” Journal of the American Chemical Society, vol. 130, no. 34, pp. 11312–11316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, and P. Knauth, “Alternative Li-ion battery electrode based on self-organized titania nanotubes,” Chemistry of Materials, vol. 21, no. 1, pp. 63–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. X. Chen, N. Q. Zhang, and K. N. Sun, “A vapor-phase corrosion strategy to hierarchically mesoporous nanosheet-assembled gearlike pillar arrays for super-performance lithium storage,” The Journal of Physical Chemistry C, vol. 116, no. 40, pp. 21224–21231. View at Publisher · View at Google Scholar
  64. X. Chen, N. Q. Zhang, and K. N. Sun, “Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties,” Journal of Materials Chemistry, vol. 22, no. 27, pp. 13637–13642, 2012.
  65. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon, “High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications,” Nature Materials, vol. 5, no. 7, pp. 567–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. H. Kim, T. Ayalasomayajula, V. Gona, and D. Choi, “Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries,” Journal of Power Sources, vol. 183, no. 1, pp. 366–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. S. Kim, H. J. Ahn, S. H. Nam, S. H. Lee, H. S. Shim, and W. B. Kim, “Honeycomb pattern array of vertically standing core-shell nanorods: its application to Li energy electrodes,” Applied Physics Letters, vol. 93, no. 10, Article ID 103104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Takahashi, Y. Wang, K. Lee, and G. Cao, “Fabrication and Li+-intercalation properties of V2O5-TiO2 composite nanorod arrays,” Applied Physics A, vol. 82, no. 1, pp. 27–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Wang, K. Takahashi, H. Shang, and G. Cao, “Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays,” Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3085–3088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. M. M. Shaijumon, E. Perre, B. Daffos, P. L. Taberna, J. M. Tarascon, and P. Simon, “Nanoarchitectured 3D cathodes for Li-ion microbatteries,” Advanced Materials, vol. 22, no. 44, pp. 4978–4981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Wang and G. Cao, “Synthesis and electrochemical properties of InVO4 nanotube arrays,” Journal of Materials Chemistry, vol. 17, no. 9, pp. 894–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Lahiri, S. W. Oh, J. Y. Hwang et al., “High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper,” ACS Nano, vol. 4, no. 6, pp. 3440–3446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Teki, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, and N. Koratkar, “Nanostructured silicon anodes for lithium Ion rechargeable batteries,” Small, vol. 5, no. 20, pp. 2236–2242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Bazin, S. Mitra, P. L. Taberna et al., “High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries,” Journal of Power Sources, vol. 188, no. 2, pp. 578–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Finke, P. Poizot, C. Guéry et al., “Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li,” Electrochemical and Solid-State Letters, vol. 11, no. 3, pp. E5–E9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Wang, F. Su, S. Madhavi, and X. W. Lou, “CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage,” Nanoscale, vol. 3, no. 4, pp. 1618–1623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Wang, Q. Pan, Y. Cheng, J. Zhao, and G. Yin, “Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries,” Electrochimica Acta, vol. 54, no. 10, pp. 2851–2855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. Q. Pan, L. Qin, J. Liu, and H. Wang, “Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries,” Electrochimica Acta, vol. 55, no. 20, pp. 5780–5785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Ferrara, L. Damen, C. Arbizzani et al., “SnCo nanowire array as negative electrode for lithium-ion batteries,” Journal of Power Sources, vol. 196, no. 3, pp. 1469–1473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Tian, W. Wang, S. H. Lee, et al., “Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces,” Journal of Power Sources, vol. 196, no. 23, pp. 10207–10212, 2011.
  81. M. Tian, W. Wang, Y. J. Wei, and R. G. Yang, “Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni-Sn nanowire networks,” Journal of Power Sources, vol. 211, no. 23, pp. 46–51, 2012.
  82. J. Z. Wang, N. Du, H. Zhang, et al., “Cu-Si1xGexCore-Shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries,” Journal of Power Sources, vol. 208, no. 15, pp. 434–439, 2012.
  83. C. H. Lai, K. W. Huang, J. H. Cheng, C. Y. Lee, B. J. Hwang, and L. J. Chen, “Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries,” Journal of Materials Chemistry, vol. 20, no. 32, pp. 6638–6645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Villevieille, F. Robert, P. L. Taberna, L. Bazin, P. Simon, and L. Monconduit, “The good reactivity of lithium with nanostructured copper phosphide,” Journal of Materials Chemistry, vol. 18, no. 48, pp. 5956–5960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. L. W. Ji, Z. K. Tan, T. Kuykendall, et al., “Multilayer nanoassembly of Sn-nanopillar arrays sandiwiched between graphene layers for high-capacity lithium storage,” Energy & Environmental Science, vol. 4, no. 9, pp. 3611–3616, 2011.
  86. M. S. Wu, P. C. J. Chiang, J. T. Lee, and J. C. Lin, “Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries,” Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23279–23284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Fan, H. Shao, J. Wang, L. Liu, J. Zhang, and C. Cao, “Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities,” Chemical Communications, vol. 47, no. 12, pp. 3469–3471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Liu, Y. Li, X. Huang et al., “Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries,” Journal of Materials Chemistry, vol. 19, no. 13, pp. 1859–1864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Liu, Y. Li, H. Fan et al., “Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage,” Chemistry of Materials, vol. 22, no. 1, pp. 212–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Liu, Y. Li, R. Ding et al., “Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability,” Journal of Physical Chemistry C, vol. 113, no. 13, pp. 5336–5339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Zhao, G. Wang, Y. Huang, B. Wang, B. Yao, and Y. Wu, “Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2,” Chemistry of Materials, vol. 20, no. 8, pp. 2612–2614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, “Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries,” Nano Letters, vol. 9, no. 3, pp. 1002–1006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Ferrara, C. Arbizzani, and L. Damen, “High-performing SnCo nanowire electrodes as anodes for lithium-ion batteries,” Journal of Power Sources, vol. 211, pp. 103–107, 2012.
  94. C. Masarapu, V. Subramanian, H. Zhu, and B. Wei, “Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries,” Advanced Functional Materials, vol. 19, no. 7, pp. 1008–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. C. K. Chan, X. F. Zhang, and Y. Cui, “High capacity Li ion battery anodes using Ge nanowires,” Nano Letters, vol. 8, no. 1, pp. 307–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Hu, H. Wu, S. S. Hong et al., “Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes,” Chemical Communications, vol. 47, no. 1, pp. 367–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, “Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes,” Nano Letters, vol. 9, no. 1, pp. 491–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Gohier, B. Laïk, J. P. Pereira-Ramos, et al., “Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries,” Journal of Power Sources, vol. 203, pp. 135–139, 2012.
  99. N. Liu, L. B. Hu, M. T. McDowell, et al., “Prelithiated silicon nanowires as an anode for lithium ion batteries,” ACS Nano, vol. 5, no. 8, pp. 6487–6493, 2011.
  100. L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, “Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries,” ACS Nano, vol. 4, no. 7, pp. 3671–3678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Chen, Y. Xiao, L. Wang, and Y. Yang, “Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries,” Journal of Power Sources, vol. 196, no. 16, pp. 6657–6662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. K. S. Park, J. G. Kang, Y. J. Choi, S. Lee, D. W. Kim, and J. G. Park, “Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays,” Energy and Environmental Science, vol. 4, no. 5, pp. 1796–1801, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Jiang, J. H. Zhu, Y. M. Feng, et al., “A novel evolution strategy to fabricate a 3D hierarchical interconnected core-shell Ni/MnO2 hybrid for Li-ion batteries,” Chemical Communications, vol. 48, no. 60, pp. 7471–7473, 2012.
  104. W. Zhou, C. Cheng, J. Liu et al., “Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance,” Advanced Functional Materials, vol. 21, no. 13, pp. 2439–2445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Luo, K. Wang, J. P. Wang, et al., “Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries,” Advanced Materials, vol. 24, no. 17, pp. 2294–2298, 2012.
  106. J. J. Schneider, J. Khanderi, A. Popp, et al., “Hybrid architectures from 3D aligned arrays of multiwall carbon nanotubes and nanoparticulate LiCoPO4: synthesis, properties and evaluation of their electrochemical performance as cathode materials in lithium ion batteries,” European Journal of Inorganic Chemistry, vol. 211, no. 28, pp. 4349–4359, 2011.
  107. L. Dimesso, C. Förster, W. Jaegermann, et al., “Developments in nanostructured LiMPO4 (M= Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture,” Chemical Society Reviews, vol. 41, no. 15, pp. 5068–5080, 2012.
  108. Y. Wang, H. J. Zhang, W. X. Lim, J. Y. Lin, and C. C. Wong, “Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries,” Journal of Materials Chemistry, vol. 21, no. 7, pp. 2362–2368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Du, Z. Guo, P. Zhang et al., “SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries,” Journal of Materials Chemistry, vol. 20, no. 27, pp. 5689–5694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. M. C. Qiu, L. W. Yang, X. Qi, J. Li, and J. X. Zhong, “Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery,” ACS Applied Materials and Interfaces, vol. 2, no. 12, pp. 3614–3618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Liu, Q. Zhang, P. Xiao et al., “Hydrous manganese dioxide nanowall arrays growth and their Li+ ions intercalation electrochemical properties,” Chemistry of Materials, vol. 20, no. 4, pp. 1376–1380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. H. Lee, I. C. Leu, C. L. Liao et al., “Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries,” Electrochemical and Solid-State Letters, vol. 9, no. 4, pp. A207–A210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. J. H. Kim, S. Khanal, M. Islam, A. Khatri, and D. Choi, “Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries,” Electrochemistry Communications, vol. 10, no. 11, pp. 1688–1690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. S. S. Zhang and T. R. Jow, “Aluminum corrosion in electrolyte of Li-ion battery,” Journal of Power Sources, vol. 109, no. 2, pp. 458–464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. S. T. Myung, Y. Hitoshi, and Y. K. Sun, “Electrochemical behavior and passivation of current collectors in lithium-ion batteries,” Journal of Materials Chemistry, vol. 21, no. 27, pp. 9891–9911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Takahashi, S. J. Limmer, Y. Wang, and G. Cao, “Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition,” Journal of Physical Chemistry B, vol. 108, no. 28, pp. 9795–9800, 2004. View at Scopus
  117. K. Takahashi, S. J. Limmer, Y. Wang, and G. Cao, “Growth and electrochemical properties of single-crystalline V2O5 nanorod arrays,” Japanese Journal of Applied Physics Part 1, vol. 44, no. 1 B, pp. 662–668, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Takahashi, Y. Wang, and G. Z. Cao, “Ni-V2O5· nH2O core-shell nanocable arrays for enhanced electrochemical intercalation,” The Journal of Physical Chemistry B, vol. 109, no. 1, pp. 48–51, 2005.
  119. E. Perre, L. Nyholm, T. Gustafsson, P. L. Taberna, P. Simon, and K. Edström, “Direct electrodeposition of aluminium nano-rods,” Electrochemistry Communications, vol. 10, no. 10, pp. 1467–1470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. G. Oltean, L. Nyholm, and K. Edström, “Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors,” Electrochimica Acta, vol. 56, no. 9, pp. 3203–3208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Zhang, Z. Du, R. Lin et al., “Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries,” Advanced Materials, vol. 22, no. 47, pp. 5378–5382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Duan, J. Gnanaraj, X. Chen, B. Li, and J. Liang, “Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery,” Journal of Power Sources, vol. 185, no. 1, pp. 512–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. H. Duan, J. Gnanaraj, and J. Liang, “Synthesis and rate performance of Fe3O4-based Cu nanostructured electrodes for Li ion batteries,” Journal of Power Sources, vol. 196, no. 10, pp. 4779–4784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. D. D. Jiang, H. Y. Tian, C. C. Qiu, et al., “Electrodeposition and characterization of assembly of Sn on Cu nanorods for Li-ion microbattery application,” Journal of Solid State Electrochemistry, vol. 15, no. 11-12, pp. 2639–2644, 2011.
  125. H. Lee, J. J. Cho, J. Kim, and H. J. Kim, “Comparison of voltammetric responses over the cathodic region in LiPF6 and LiBETI with and without HF,” Journal of the Electrochemical Society, vol. 152, no. 6, pp. A1193–A1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. X. Ji, X. Huang, J. Liu et al., “Carbon-coated SnO2 nanorod array for lithium-ion battery anode material,” Nanoscale Research Letters, vol. 5, no. 3, pp. 649–653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Iwakura, Y. Fukumoto, H. Inoue et al., “Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries,” Journal of Power Sources, vol. 68, no. 2, pp. 301–303, 1997. View at Scopus
  128. Z. Wei, Z. Liu, R. Jiang, C. Bian, T. Huang, and A. Yu, “TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries,” Journal of Solid State Electrochemistry, vol. 14, no. 6, pp. 1045–1050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. D. Liu, P. Xiao, Y. Zhang et al., “TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation,” Journal of Physical Chemistry C, vol. 112, no. 30, pp. 11175–11180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Liu, Y. Zhang, P. Xiao et al., “TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation,” Electrochimica Acta, vol. 54, no. 27, pp. 6816–6820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. D. Liu, B. B. Garcia, Q. Zhang et al., “Mesoporous hydrous manganese dioxide nanowall arrays with large lithium ion energy storage capacities,” Advanced Functional Materials, vol. 19, no. 7, pp. 1015–1023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. K. Kang, H. S. Lee, D. W. Han, et al., “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Applied Physics Letters, vol. 96, no. 5, Article ID 053110, 2010.
  133. H. Wang, Q. Pan, J. Zhao, G. Yin, and P. Zuo, “Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries,” Journal of Power Sources, vol. 167, no. 1, pp. 206–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. Q. Pan, H. Jin, H. Wang, and G. Yin, “Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance,” Electrochimica Acta, vol. 53, no. 2, pp. 951–956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. X. Chen, N. Q. Zhang, and K. N. Sun, “Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage,” Journal of Materials Chemistry, vol. 22, no. 30, pp. 15080–15084, 2012.
  136. W. X. Zhang, M. Li, Q. Wang, et al., “Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries,” Advanced Functional Materials, vol. 21, no. 8, pp. 3516–3523, 2011.
  137. W. Q. Zeng, F. P. Zheng, R. Z. Li, et al., “Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity,” Nanoscale, vol. 4, no. 8, pp. 2760–2765, 2012.
  138. F. F. Cao, J. W. Deng, S. Xin, et al., “Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries,” Advanced Materials, vol. 23, no. 38, pp. 4415–4420, 2011.
  139. X. Chen, K. Gerasopoulos, J. Guo et al., “A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector,” Advanced Functional Materials, vol. 21, no. 2, pp. 380–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. L. B. Hu, H. Wu, Y. F. Gao, et al., “Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal Capacity,” Advanced Energy Materials, vol. 1, no. 4, pp. 523–527, 2011.
  141. G. F. Ortiz, I. Hanzu, P. Lavela, P. Knauth, J. L. Tirado, and T. Djenizian, “Nanoarchitectured TiO2/SnO: a future negative electrode for high power density Li-Ion microbatteries,” Chemistry of Materials, vol. 22, no. 5, pp. 1926–1932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. G. F. Ortiz, I. Hanzu, P. Lavela, J. L. Tirado, P. Knauth, and T. Djenizian, “A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries,” Journal of Materials Chemistry, vol. 20, no. 20, pp. 4041–4046, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Cheng, Z. G. Lu, J. Q. Deng, C. Y. Chung, K. Zhang, and Y. Y. Li, “A facile method to improve the high rate capability of Co3O4 nanowire array electrodes,” Nano Research, vol. 3, no. 12, pp. 895–901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. W. Wang, R. Epur, and P. N. Kumta, “Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery,” Electrochemistry Communications, vol. 13, no. 5, pp. 429–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. W. Wang and P. N. Kumta, “Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes,” ACS Nano, vol. 4, no. 4, pp. 2233–2241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Gohier, B. Laïk, K. H. Kim, et al., “High rate capacity silicon decorated vertically aligned carbon nanotubes for Li-ion batteries,” Advanced Materials, vol. 24, no. 19, pp. 2592–2597, 2012.
  147. T. I. Lee, J. P. Jeagal, J. H. Choi, et al., “Binder-free and full electrical-addressing free-standing nanosheets with carbon nanotube fabrics for electrochemical applications,” Advanced Materials, vol. 23, no. 40, pp. 4711–4715, 2011.