About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 907503, 7 pages
http://dx.doi.org/10.1155/2012/907503
Research Article

Low Temperature Synthesis of Hexagonal Shaped α-Al2O3 Using a Solvothermal Method

1Department of Chemistry, College of Science, Yeungnam University, 214-1 Daedong, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
2School of Chemical Engineering, Yeungnam University, 214-1 Daedong, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
3TPS Inc., 193 Galsan-dong, Dalseo-gu, Daegu 704-900, Republic of Korea

Received 15 November 2012; Revised 6 December 2012; Accepted 12 December 2012

Academic Editor: Jianxin Zou

Copyright © 2012 A-Young Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Akselrod and J. F. Bruni, “Modern trends in crystal growth and new applications of sapphire,” Journal of Crystal Growth, vol. 360, pp. 134–145, 2012.
  2. W. J. Li, E. W. Shi, and Z. W. Yin, “Growth habit of rutile and α-Al2O3 crystals,” Journal of Crystal Growth, vol. 208, no. 1, pp. 546–554, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. P. C. Borman and K. R. Westerterp, “An experimental study of the kinetics of the selective oxidation of ethene over a silver on α-alumina catalyst,” Industrial and Engineering Chemistry Research, vol. 34, no. 1, pp. 49–58, 1995. View at Scopus
  4. J. Goetz, M. A. Volpe, A. M. Sica, C. E. Gigola, and R. Touroude, “Low-loaded palladium on α-alumina catalysts: characterization by chemisorption, electron-microscopy, and photoelectron spectroscopy,” Journal of Catalysis, vol. 153, no. 1, pp. 86–93, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Janbey, R. K. Pati, S. Tahir, and P. Pramanik, “A new chemical route for the synthesis of nano-crystalline α-Al2O3 powder,” Journal of the European Ceramic Society, vol. 21, no. 12, pp. 2285–2289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. K. Sharma, V. V. Varadan, and V. K. Varadan, “A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area,” Journal of the European Ceramic Society, vol. 23, no. 5, pp. 659–666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. W. L. Suchanek, “Hydrothermal synthesis of alpha alumina (α-Al2O3) powders: study of the processing variables and growth mechanisms,” Journal of the American Ceramic Society, vol. 93, no. 2, pp. 399–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Laishram, R. Mann, and N. Malhan, “A novel microwave combustion approach for single step synthesis of α-Al2O3 nanopowders,” Ceramics International, vol. 38, pp. 1703–1706, 2012.
  9. F. Mirjalili, M. Hasmaliza, and L. C. Abdullah, “Size-controlled synthesis of nano α-alumina particles through the sol-gel method,” Ceramics International, vol. 36, no. 4, pp. 1253–1257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, “Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process,” Ceramics International, vol. 32, no. 5, pp. 587–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Rajendran, “Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics,” Journal of Materials Science, vol. 29, no. 21, pp. 5664–5672, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Li, Y. Wu, Y. Pan, W. Liu, and J. Guo, “Influence of fluorides on phase transition of α-Al2O3 formation,” Ceramics International, vol. 33, no. 6, pp. 919–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. J. Kim, T. G. Kim, J. J. Kim, S. S. Park, S. S. Hong, and G. D. Lee, “Influences of precursor and additive on the morphology of nanocrystalline α-alumina,” Journal of Physics and Chemistry of Solids, vol. 69, no. 5-6, pp. 1521–1524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Lee, H. S. Kim, J. S. Lee, N.-K. Park, T. J. Lee, and M. Kang, “Synthesis of α-Al2O3 at mild temperatures by controlling aluminum precursor, pH, and ethylenediamine chelating additive,” Ceramics International, vol. 38, pp. 6685–6691, 2012.
  15. H. S. Kim, N.-K. Park, T. J. Lee, M.-H. Um, and M. Kang, “Preparation of nanosized α-Al2O3 particles using a microwave pretreatment at mild temperature,” Advances in Materials Science and Engineering, vol. 2012, pp. 1–6, 2012.
  16. N. S. Bell and J. H. Adair, “Adsorbate effects on glycothermally produced α-alumina particle morphology,” Journal of Crystal Growth, vol. 203, no. 1, pp. 213–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Boumaza, L. Favaro, J. Lédion et al., “Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study,” Journal of Solid State Chemistry, vol. 182, no. 5, pp. 1171–1176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Liu, G. Ning, Z. Gan, and Y. Lin, “Emulsion-based synthesis of unaggregated, spherical alpha alumina,” Materials Letters, vol. 62, no. 10-11, pp. 1685–1688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, “On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems,” Microporous and Mesoporous Materials, vol. 117, no. 1-2, pp. 75–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Moulder, W. F. Stickle, P. E. Sobal, and K. D. Bomben, Hand Book of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, Minn, USA, 1992.
  21. M. Khalfaoui, S. Knani, M. A. Hachicha, and A. B. Lamine, “New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment,” Journal of Colloid and Interface Science, vol. 263, no. 2, pp. 350–356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. D. Donohue and G. L. Aranovich, “Classification of Gibbs adsorption isotherms,” Advances in Colloid and Interface Science, vol. 76, pp. 137–152, 1998. View at Scopus