About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 963609, 8 pages
http://dx.doi.org/10.1155/2012/963609
Research Article

Growth of Silver Nanoparticles by DC Magnetron Sputtering

1Applied Nanotechnology Laboratory (ANT Lab), Department of Physics, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
2Department of Physics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
3Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

Received 13 May 2012; Accepted 27 June 2012

Academic Editor: Zhenhui Kang

Copyright © 2012 P. Asanithi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Guzman, J. Dille, and S. Godet, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomedicine, vol. 8, pp. 37–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Xu and K. S. Suslick, “Water-soluble fluorescent silver nanoclusters,” Advanced Materials, vol. 22, no. 10, pp. 1078–1082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. J. Jiang, C. Y. Liu, and L. W. Sun, “Catalytic properties of silver nanoparticles supported on silica spheres,” Journal of Physical Chemistry B, vol. 109, no. 5, pp. 1730–1735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Letters, vol. 3, no. 8, pp. 1057–1062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Filippo, A. Serra, and D. Manno, “Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor,” Sensors and Actuators B, vol. 138, no. 2, pp. 625–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. D. Evanoff and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem, vol. 6, no. 7, pp. 1221–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Soo Choi, W. Liu, P. Misra et al., “Renal clearance of quantum dots,” Nature Biotechnology, vol. 25, no. 10, pp. 1165–1170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Kemp, A. Kumar, S. Mousa et al., “Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities,” Biomacromolecules, vol. 10, no. 3, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Tsuji, D. H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, and M. Tsuji, “Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions,” Applied Surface Science, vol. 254, no. 16, pp. 5224–5230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Long, G. Wu, and S. Chen, “Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation,” Radiation Physics and Chemistry, vol. 76, no. 7, pp. 1126–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Bogle, S. D. Dhole, and V. N. Bhoraskar, “Silver nanoparticles: synthesis and size control by electron irradiation,” Nanotechnology, vol. 17, no. 13, article no. 021, pp. 3204–3208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Gao, L. Liu, Y.-F. Luo, and D.-M. Jia, “In-situ preparation of epoxy/silver nanocomposites by thermal decomposition of silver-imidazole complex,” Materials Letters, vol. 65, no. 23-24, pp. 3529–3532, 2011. View at Publisher · View at Google Scholar
  14. K. Mallick, M. J. Witcomb, and M. S. Scurrell, “Polymer stabilized silver nanoparticles: a photochemical synthesis route,” Journal of Materials Science, vol. 39, pp. 4459–4463, 2004.
  15. B. Hu, S. B. Wang, K. Wang, M. Zhang, and S. H. Yu, “Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties,” Journal of Physical Chemistry C, vol. 112, no. 30, pp. 11169–11174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surface and Coatings Technology, vol. 127, no. 2-3, pp. 203–219, 2000. View at Scopus
  17. C. Ziebert and S. Ulrich, “Hard multilayer coatings containing TiN and/or ZrN: a review and recent progress in their nanoscale characterization,” Journal of Vacuum Science and Technology A, vol. 24, no. 3, pp. 554–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Taneja, R. Banerjee, P. Ayyub, and G. K. Dey, “Observation of a hexagonal (4H) phase in nanocrystalline silver,” Physical Review B - Condensed Matter and Materials Physics, vol. 64, no. 3, Article ID 033405, pp. 0334051–0334054, 2001. View at Scopus
  19. M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert, “Concepts for the design of advanced nanoscale PVD multilayer protective thin films,” Journal of Alloys and Compounds, vol. 483, no. 1-2, pp. 321–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette, and R. J. Lad, “Growth and structure of silver and silver oxide thin films on sapphire,” Thin Solid Films, vol. 468, no. 1-2, pp. 57–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. A. Pettersson and P. G. Snyder, “Preparation and characterization of oxidized silver thin films,” Thin Solid Films, vol. 270, no. 1-2, pp. 69–72, 1995. View at Scopus
  22. S. M. Hou, M. Ouyang, H. F. Chen et al., “Fractal structure in the silver oxide thin film,” Thin Solid Films, vol. 315, no. 1-2, pp. 322–326, 1998. View at Scopus
  23. C.-H. Liu, B.-H. Mao, J. Gao et al., “Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition,” Carbon, vol. 50, no. 8, pp. 3008–3014, 2012. View at Publisher · View at Google Scholar
  24. E. Körner, M. H. Aguirre, G. Fortunato, A. Ritter, J. Rühe, and D. Hegemann, “Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties,” Plasma Processes and Polymers, vol. 7, no. 7, pp. 619–625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Ahmad, S. Sharma, M. K. Alam et al., “Rapid synthesis of silver nanoparticles using dried medicinal plant of basil,” Colloids and Surfaces B, vol. 81, no. 1, pp. 81–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Zaheer and Rafiuddin, “Multi-branched flower-like silver nanoparticles: preparation and characterization,” Colloids and Surfaces A, vol. 384, no. 1–3, pp. 427–431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Grouchko, I. Popov, V. Uvarov, S. Magdassi, and A. Kamyshny, “Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly,” Langmuir, vol. 25, no. 4, pp. 2501–2503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine,” Journal of Sol-Gel Science and Technology, vol. 39, no. 1, pp. 49–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Kitsomboonloha, S. Baruah, M. T. Z. Myint, V. Subramanian, and J. Dutta, “Selective growth of zinc oxide nanorods on inkjet printed seed patterns,” Journal of Crystal Growth, vol. 311, no. 8, pp. 2352–2358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Wender, L. F. De Oliveira, P. Migowski et al., “Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition,” Journal of Physical Chemistry C, vol. 114, no. 27, pp. 11764–11768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. D. Leaver and B. N. Chapman, Thin Films, Wykeham Publications, London, UK, 1971.
  32. A. V. Osipov, “Kinetic model of vapour-deposited thin film condensation: stage of liquid-like coalescence,” Thin Solid Films, vol. 261, no. 1-2, pp. 173–182, 1995. View at Scopus
  33. S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano, vol. 4, no. 12, pp. 7064–7072, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small, vol. 7, no. 18, pp. 2621–2628, 2011. View at Publisher · View at Google Scholar