About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 986454, 10 pages
http://dx.doi.org/10.1155/2012/986454
Research Article

Fabrication and Application of Iron(III)-Oxide Nanoparticle/Polydimethylsiloxane Composite Cone in Microfluidic Channels

1Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
2Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
3Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan

Received 4 May 2012; Accepted 5 December 2012

Academic Editor: Gaurav Mago

Copyright © 2012 Cheng-Chun Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, vol. 295, no. 5555, pp. 647–651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Z. Liu, B. J. Kim, and H. J. Sung, “Two-fluid mixing in a microchannel,” International Journal of Heat and Fluid Flow, vol. 25, no. 6, pp. 986–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Sheen, C. J. Hsu, T. H. Wu, H. C. Chu, C. C. Chang, and U. Lei, “Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer,” Sensors and Actuators A, vol. 139, no. 1-2, pp. 237–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Sudarsan and V. M. Ugaz, “Fluid mixing in planar spiral microchannels,” Lab on a Chip, vol. 6, no. 1, pp. 74–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zhang, J. Wu, L. Wang, K. Xiao, and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab on a Chip, vol. 10, no. 9, pp. 1199–1203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. G. Grancharov, H. Zeng, S. Sun et al., “Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor,” The Journal of Physical Chemistry B, vol. 109, no. 26, pp. 13030–13035, 2005.
  7. M. A. M. Gijs, “Magnetic bead handling on-chip: new opportunities for analytical applications,” Microfluidics and Nanofluidics, vol. 1, no. 1, pp. 22–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sandhu, H. Handa, and M. Abe, “Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics,” Nanotechnology, vol. 21, no. 44, Article ID 442001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Kose and H. Koser, “Ferrofluid mediated nanocytometry,” Lab on a Chip, vol. 12, no. 1, pp. 190–196, 2012. View at Publisher · View at Google Scholar
  10. N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab on a Chip, vol. 6, no. 8, pp. 974–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Peyman, A. Iles, and N. Pamme, “Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow,” Lab on a Chip, vol. 9, no. 21, pp. 3110–3117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Zhu, F. Marrero, and L. Mao, “Continuous separation of non-magnetic particles inside ferrofluids,” Microfluidics and Nanofluidics, vol. 9, no. 4-5, pp. 1003–1009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. S. Kim and J. K. Park, “Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel,” Lab on a Chip, vol. 5, no. 6, pp. 657–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Shevkoplyas, A. C. Siegel, R. M. Westervelt, M. G. Prentiss, and G. M. Whitesides, “The force acting on a superparamagnetic bead due to an applied magnetic field,” Lab on a Chip, vol. 7, no. 10, pp. 1294–1302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Pascal, J. L. Pascal, F. Favier, M. L. E. Moubtassim, and C. Payen, “Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size, morphology, microstructure, and magnetic behavior,” Chemistry of Materials, vol. 11, no. 1, pp. 141–147, 1999. View at Publisher · View at Google Scholar
  16. W. H. Binder, H. Weinstabl, and R. Sachsenhofer, “Superparamagnetic ironoxide nanoparticles via ligand exchange reactions: organic 1,2-diols as versatile building blocks for surface engineering,” Journal of Nanomaterials, vol. 2008, Article ID 383020, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Zhang and X. Xie, “Controllable assembly of hydrophobic superparamagnetic iron oxide nanoparticle with mPEG-PLA copolymer and its effect on MR transverse relaxation rate,” Journal of Nanomaterials, vol. 2011, Article ID 152524, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Filipcsei and M. Zrínyi, “Magnetodeformation effects and the swelling of ferrogels in a uniform magnetic field,” Journal of Physics Condensed Matter, vol. 22, no. 27, Article ID 276001, 2010. View at Publisher · View at Google Scholar · View at Scopus