About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 123812, 12 pages
http://dx.doi.org/10.1155/2013/123812
Review Article

Engineering Metal Nanostructure for SERS Application

1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received 4 October 2012; Accepted 10 December 2012

Academic Editor: Yongsheng Li

Copyright © 2013 Yanqin Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annual Review of Analytical Chemistry, vol. 1, no. 1, pp. 601–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Analytical Chemistry, vol. 17, no. 8-9, pp. 557–582, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced: Raman spectroscopy,” Analytical Chemistry, vol. 77, no. 17, pp. 338A–346A, 2005. View at Scopus
  4. M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics, vol. 57, no. 3, pp. 783–826, 1985. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” Journal of Physical Chemistry B, vol. 106, no. 37, pp. 9463–9483, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wang, W. Shi, G. She, and L. Mu, “Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures,” Physical Chemistry Chemical Physics, vol. 14, no. 17, pp. 5891–5901, 2012.
  7. Y. Wang, W. Ruan, J. Zhang et al., “Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals,” Journal of Raman Spectroscopy, vol. 40, no. 8, pp. 1072–1077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small, vol. 4, no. 10, pp. 1576–1599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, and M. Nogami, “Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties,” Journal of Physical Chemistry C, vol. 111, no. 26, pp. 9095–9104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. V. P. Kumar, “Plasmonic nano-architectures for surface enhanced Raman scattering: a review,” Journal of Nanophotonics, vol. 6, no. 1, Article ID 064503, 2012.
  11. M. Rycenga, C. M. Cobley, J. Zeng et al., “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chemical Reviews, vol. 111, no. 6, pp. 3669–3712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. C. Brown, J. Wang, and M. J. T. Milton, “Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the efficacy of SERS substrates,” Journal of Nanomaterials, vol. 2007, Article ID 12086, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Campion, J. E. Ivanecky III, C. M. Child, and M. Foster, “On the mechanism of chemical enhancement in surface-enhanced raman scattering,” Journal of the American Chemical Society, vol. 117, no. 47, pp. 11807–11808, 1995. View at Scopus
  14. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, vol. 27, no. 4, pp. 241–250, 1998. View at Scopus
  15. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced raman scattering enhancement factors: a comprehensive study,” Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794–13803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. X. Wang, S. S. Liu, W. T. Gao, W. Li, Y. J. Zhang, and J. H. Yang, “Surface-enhanced Raman spectroscopy based on ordered nanocap arrays,” Superlattices and Microstructures, vol. 52, no. 4, pp. 750–758, 2012.
  17. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annual Review of Physical Chemistry, vol. 58, pp. 267–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Zhang, C. Cobley, L. Au et al., “Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon,” ACS Applied Materials & Interfaces, vol. 1, no. 9, pp. 2044–2048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Zhang, W. Li, C. Moran et al., “Seed-mediated synthesis of ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” Journal of the American Chemical Society, vol. 132, no. 32, pp. 11372–11378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Santos Costa, R. A. Ando, A. C. Sant'ana et al., “High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides,” Physical Chemistry Chemical Physics, vol. 11, no. 34, pp. 7491–7498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Pietrobon, M. McEachran, and V. Kitaev, “Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods,” ACS Nano, vol. 3, no. 1, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Yang, J. Shi, T. Tanaka, and M. Nogami, “Self-assembled silver nanochains for surface-enhanced Raman scattering,” Langmuir, vol. 23, no. 24, pp. 12042–12047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Jia, X. Bai, N. Li, L. Yu, and L. Zheng, “Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS,” CrystEngComm, vol. 13, no. 20, pp. 6179–6184, 2011.
  24. I. Pastoriza-Santos and L. M. Liz-Marzán, “Colloidal silver nanoplates. State of the art and future challenges,” Journal of Materials Chemistry, vol. 18, no. 15, pp. 1724–1737, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B, vol. 105, no. 24, pp. 5599–5611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. H. C. Camargo, L. Au, M. Rycenga, W. Li, and Y. Xia, “Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes,” Chemical Physics Letters, vol. 484, no. 4–6, pp. 304–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chemical Physics Letters, vol. 427, no. 1–3, pp. 122–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews, vol. 107, no. 11, pp. 4797–4862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angewandte Chemie, vol. 48, no. 1, pp. 60–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Tao, S. Habas, and P. Yang, “Shape control of colloidal metal nanocrystals,” Small, vol. 4, no. 3, pp. 310–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics, vol. 4, no. 2, pp. 171–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Accounts of Chemical Research, vol. 40, no. 10, pp. 1067–1076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angewandte Chemie, vol. 45, no. 28, pp. 4597–4601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, and H. Song, “Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra,” Journal of Physical Chemistry C, vol. 112, no. 7, pp. 2469–2475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Seo, C. P. Ji, and H. Song, “Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes,” Journal of the American Chemical Society, vol. 128, no. 46, pp. 14863–14870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li, and Y. Xia, “Successive deposition of silver on silver nanoplates: lateral versus vertical growth,” Angewandte Chemie, vol. 50, no. 1, pp. 244–249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Zhang, C. H. Moran, X. Xia, M. Rycenga, N. Li, and Y. Xia, “Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties,” Langmuir, vol. 28, no. 24, pp. 9047–9054, 2012.
  38. D. Y. Kim, T. Yu, E. C. Cho, Y. Ma, O. O. Park, and Y. Xia, “Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties,” Angewandte Chemie, vol. 50, no. 28, pp. 6328–6331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids and Surfaces A, vol. 387, no. 1–3, pp. 17–22, 2011.
  40. S. Guo and S. Dong, “Metal nanomaterial-based self-assembly: development, electrochemical sensing and SERS applications,” Journal of Materials Chemistry, vol. 21, no. 42, pp. 16704–16716, 2011.
  41. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzan, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale, vol. 3, no. 4, pp. 1304–1315, 2011.
  42. X. Zhang, H. Chen, and H. Zhang, “Layer-by-layer assembly: from conventional to unconventional methods,” Chemical Communications, no. 14, pp. 1395–1405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Huang, Y. Yang, Z. Chen, X. Li, and M. Nogami, “Fabricating Au-Ag core-shell composite films for surface-enhanced Raman scattering,” Journal of Materials Science, vol. 43, no. 15, pp. 5390–5393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Peng, Y. Lee, C. Wang, H. Yin, S. Dai, and S. Sun, “A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation,” Nano Research, vol. 1, no. 3, pp. 229–234, 2008.
  45. A. R. Tao, J. Huang, and A. P. Yang, “Langmuir−blodgettry of nanocrystals and nanowires,” Accounts of Chemical Research, vol. 41, pp. 1662–1673, 2008.
  46. H. Wu, F. Bai, Z. Sun et al., “Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays,” Journal of the American Chemical Society, vol. 132, no. 37, pp. 12826–12828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Zhang, P. Xu, X. Xie et al., “Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures,” Journal of Materials Chemistry, vol. 21, no. 8, pp. 2495–2501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Duan, D. Wang, D. G. Kurth, and H. Möhwald, “Directing self-assembly of nanoparticles at water/oil interfaces,” Angewandte Chemie, vol. 43, no. 42, pp. 5639–5642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2—coated gold nanochains for tunable nonlinear optical properties,” Applied Physics Letters, vol. 88, no. 8, Article ID 081110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Yang, S. Matsubara, M. Nogami, J. Shi, and W. Huang, “One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties,” Nanotechnology, vol. 17, no. 11, pp. 2821–2827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Kawamura, Y. Yang, and M. Nogami, “End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions,” Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10632–10636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Yin and Y. Xia, “Self-assembly of spherical colloids into helical chains with well-controlled handedness,” Journal of the American Chemical Society, vol. 125, no. 8, pp. 2048–2049, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Makiabadi, A. Bouvrée, V. Le Nader, H. Terrisse, and G. Louarn, “Preparation, optimization, and characterization of SERS sensor substrates based on two-dimensional structures of gold colloid,” Plasmonics, vol. 5, no. 1, pp. 21–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. L. Seung, M. B. Jeong, and M. Moskovits, “Polarization-dependent surface-enhanced raman scattering from a silver-nanoparticle-decorated single silver nanowire,” Nano Letters, vol. 8, no. 10, pp. 3244–3247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Lee, S. Y. Lee, R. M. Briber, and O. Rabin, “Self-assembled SERS substrates with tunable surface plasmon resonances,” Advanced Functional Materials, vol. 21, no. 18, pp. 3424–3429, 2011.
  56. A. Cerf, G. Molnár, and C. Vieu, “Novel approach for the assembly of highly efficient SERS substrates,” ACS Applied Materials and Interfaces, vol. 1, no. 11, pp. 2544–2550, 2009.
  57. M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Analytica Chimica Acta, vol. 693, no. 1-2, pp. 7–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle Cluster Arrays for SERS through direct self-assemble,” Acs Nano, vol. 6, pp. 2056–2070, 2012.
  59. M. A. Olson, A. Coskun, R. Klajn et al., “Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions,” Nano Letters, vol. 9, no. 9, pp. 3185–3190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Sardar and J. S. Shumaker-Parry, “Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains,” Nano Letters, vol. 8, no. 2, pp. 731–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Chen, Y. Wang, L. H. Tan et al., “High-purity separation of gold nanoparticle dimers and trimers,” Journal of the American Chemical Society, vol. 131, no. 12, pp. 4218–4219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Wang, L. Huang, L. Yuan, et al., “Silver nanostructure arrays abundant in sub-5nm gaps as highly Raman-enhancing substrates,” Applied Surface Science, vol. 258, no. 8, pp. 3519–3523, 2012.
  63. L. Nataraj and S. G. Cloutier, “Highly ordered periodic array of metallic nanodots fabricated through template-assisted nanopatterning and its use for surface-enhanced Raman scattering spectroscopy of flexible crystalline-silicon nanomembranes,” Journal of Raman Spectroscopy, vol. 42, no. 6, pp. 1294–1297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. E. A. Batista, D. R. D. Santos, G. F. S. Andrade, A. C. Sant'Ana, A. G. BroIo, and M. L. A. Temperin, “Using polycarbonate membranes as templates for the preparation of au nanostructures for surface-enhanced raman scattering,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 5, pp. 3233–3238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Tian, Z. Liu, J. Jin, et al., “Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy,” Nanotechnology, vol. 23, no. 16, Article ID 165604, 2012.
  66. S. Yang and Y. Lei, “Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications,” Nanoscale, vol. 3, no. 7, pp. 2768–2782, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Zhang, X. Qiao, and J. Chen, “Synthesis of silver nanoparticles—effects of concerned parameters in water/oil microemulsion,” Materials Science and Engineering B, vol. 142, no. 1, pp. 1–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays,” Advanced Materials, vol. 22, no. 38, pp. 4249–4269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Liu, Y. Li, G. Duan, et al., “Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays,” ACS Applied Materials & Interfaces, vol. 4, no. 1, pp. 1–5, 2011.
  70. Y. Yang, Z. Y. Li, K. Yamaguchi, et al., “Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics,” Nanoscale, vol. 4, no. 8, pp. 2663–2669, 2012. View at Publisher · View at Google Scholar
  71. Y. Yang, M. Tanemura, Z. Huang et al., “Aligned gold nanoneedle arrays for surface-enhanced Raman scattering,” Nanotechnology, vol. 21, no. 32, Article ID 325701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Rodríguez-Fernández, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Colloidal synthesis of gold semishells,” ChemistryOpen, vol. 1, no. 2, pp. 90–95, 2012.
  73. J. C. Yang, C. H. Chen, and R. J. Wu, “Facile growth of silver crystals with greatly varied morphologies by PEO-PPO-PEO tri-block copolymers,” CrystEngComm, vol. 14, pp. 2871–2878, 2012.
  74. J. He, X. Han, J. Yan, et al., “Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications,” CrystEngComm, vol. 14, no. 15, pp. 4952–4954, 2012.
  75. L. L. Qu, D. W. Li, J. Q. Xue, W. L. Zhai, J. S. Fossey, and Y. T. Long, “Batch fabrication of disposable screen printed SERS arrays,” Lab on a Chip, vol. 12, no. 5, pp. 876–881, 2012.
  76. X. Hong, D. Wang, and Y. Li, “Kinked gold nanowires and their SPR/SERS properties,” Chemical Communications, vol. 47, no. 35, pp. 9909–9911, 2011.
  77. N. Pazos-Pérez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery, and L. M. Liz-Marzán, “Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids,” Chemical Science, vol. 1, no. 2, pp. 174–178, 2010.
  78. C. Zhu, G. Meng, Q. Huang et al., “Ag nanosheet-assembled micro-hemispheres as effective SERS substrates,” Chemical Communications, vol. 47, no. 9, pp. 2709–2711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. M. F. Zhang, A. W. Zhao, H. H. Sun, et al., “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” Journal of Materials Chemistry, vol. 21, no. 46, pp. 18817–18824, 2011.
  80. X. Han, H. Wang, X. Ou, and X. Zhang, “Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks,” Journal of Materials Chemistry, vol. 22, no. 28, pp. 14127–14132, 2012.
  81. J. F. Li, Y. F. Huang, Y. Ding et al., “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature, vol. 464, no. 7287, pp. 392–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Pahlow, A. März, B. Seise, et al., “Bioanalytical application of surface- and tip-enhanced Raman spectroscopy,” Engineering in Life Sciences, vol. 12, no. 2, pp. 131–143, 2012.
  83. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chemical Society Reviews, vol. 37, no. 5, pp. 1052–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. P. R. Sajanlal and T. Pradeep, “Functional hybrid nickel nanostructures as recyclable SERS substrates: detection of explosives and biowarfare agents,” Nanoscale, vol. 4, no. 11, pp. 3427–3437, 2012.
  85. L.-B. Yang, G.-Y. Chen, J. Wang, T.-T. Wang, M.-Q. Li, and J.-H. Liu, “Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection,” Journal of Materials Chemistry, vol. 19, no. 37, pp. 6849–6856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. K. L. Wustholz, C. L. Brosseau, F. Casadio, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas,” Physical Chemistry Chemical Physics, vol. 11, no. 34, pp. 7350–7359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Zhang, Y. Wen, Y. Ma, J. Luo, L. Jiang, and Y. Song, “Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection,” Chemical Communications, vol. 47, no. 26, pp. 7407–7409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. N. T. B. Thuy, R. Yokogawa, Y. Yoshimura, K. Fujimoto, M. Koyano, and S. Maenosono, “Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation,” Analyst, vol. 135, no. 3, pp. 595–602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” Journal of Raman Spectroscopy, vol. 40, no. 3, pp. 277–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Advanced Functional Materials, vol. 20, no. 16, pp. 2619–2628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Samanta, K. K. Maiti, K. S. Soh et al., “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angewandte Chemie, vol. 50, no. 27, pp. 6089–6092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Kumar, B. M. Boruah, and X. Liang, “Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS,” Journal of Nanomaterials, vol. 2011, pp. 1–17, 2011.
  93. F. Zhai, Y. Huang, X. Wang, and K. Lai, “Surface-enhanced Raman spectroscopy for rapid determination of ß-agonists in swine urine,” Chinese Journal of Analytical Chemistry, vol. 40, no. 5, pp. 718–723, 2012.
  94. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Letters, vol. 6, no. 10, pp. 2225–2231, 2006. View at Publisher · View at Google Scholar · View at Scopus