About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 127690, 7 pages
http://dx.doi.org/10.1155/2013/127690
Research Article

Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor

1The TEPS Research Group, College of Engineering and Science, Footscray Park Campus, Victoria University, Melbourne, VIC 3011, Australia
2Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia

Received 9 November 2012; Accepted 26 March 2013

Academic Editor: Nadya Mason

Copyright © 2013 Hatef Sadeghi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. I. Association, International Technology Roadmap for Semiconductors (ITRS), 2011.
  2. R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974. View at Scopus
  3. H. Iwai, “CMOS technology—year 2010 and beyond,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 357–366, 1999. View at Scopus
  4. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, World Scientific Publishing Company Incorporated, 2002.
  5. W. M. C. Sansen, Analog Design Essentials, vol. 289, Springer, Berlin, Germany, 2006.
  6. P. Bai, C. Auth, S. Balakrishnan et al., “A 65nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell,” in Proceedings of the Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 657–660, December 2004. View at Scopus
  7. C. Auth, C. Allen, A. Blattner, et al., “A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” in Symposium on VLSI Technology (VLSIT '12), pp. 131–132, 2012.
  8. J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of graphene,” Nature Nanotechnology, vol. 4, no. 8, pp. 505–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Thiele, J. A. Schaefer, and F. Schwierz, “Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels,” Journal of Applied Physics, vol. 107, no. 9, Article ID 094505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Hazeghi, J. A. Sulpizio, G. Diankov, D. Goldhaber-Gordon, and H. S. P. Wong, “An integrated capacitance bridge for high-resolution, wide temperature range quantum capacitance measurements,” Review of Scientific Instruments, vol. 82, no. 5, Article ID 053904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. B. Zhang, T. T. Tang, C. Girit et al., “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, no. 7248, pp. 820–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, “Trilayer graphene is a semimetal with a gate-tunable band overlap,” Nature Nanotechnology, vol. 4, no. 6, pp. 383–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Sadeghi, J.-M. Redoute, D. T. H. Lai, M. T. Ahmadi, and R. Ismail, “A review on: carbon based materials as on-chip interconnects,” in Proceedings of the SPIE Smart Nano-Micro Materials and Devices, Melbourne, Australia, December 2011. View at Publisher · View at Google Scholar
  15. H. Sadeghi, M. T. Ahmadi, S. M. Mousavi, M. H. Ghadiry, and A. R. Ismail, “Channel conductance of ABA stacking trilayer graphene nanoribbon field effect transistor,” Modern Physics Letters B, vol. 26, no. 8, Article ID 1250047, 10 pages, 2012. View at Publisher · View at Google Scholar
  16. H. Sadeghi, M. T. Ahmadi, B. I. Ishak, S. M. Mousavi, and A. R. Ismail, “Ballistic conductance model of Bilayer Graphene Nanoribbon (BGN),” Journal of Computational and Theoretical Nanoscience, vol. 8, pp. 1993–1998, 2011.
  17. H. Lipson and A. R. Stokes, “The structure of graphite,” Proceedings of the Royal Society of London A. Mathematical and Physical Sciences, vol. 181, no. 984, pp. 101–105, 1942.
  18. H. Xu, Z. Zhang, and L.-M. Peng, “Measurements and microscopic model of quantum capacitance in graphene,” Applied Physics Letters, vol. 98, no. 13, Article ID 133122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Thiele and F. Schwierz, “Modeling of the steady state characteristics of large-area graphene field-effect transistors,” Journal of Applied Physics, vol. 110, no. 3, Article ID 034506, 7 pages, 2011. View at Publisher · View at Google Scholar
  20. M. D. Stoller, C. W. Magnuson, Y. Zhu, et al., “Interfacial capacitance of single layer graphene,” Energy & Environmental Science, vol. 4, pp. 4685–4689, 2011.
  21. M. Begliarbekov, S. Strauf, and C. P. Search, “Quantum inductance and high frequency oscillators in graphene nanoribbons,” Nanotechnology, vol. 22, no. 16, Article ID 165203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Xia, F. Chen, J. L. Tedesco et al., “The transport and quantum capacitance properties of epitaxial graphene,” Applied Physics Letters, vol. 96, no. 16, Article ID 162101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Ponomarenko, R. Yang, R. V. Gorbachev et al., “Density of states and zero landau level probed through capacitance of graphene,” Physical Review Letters, vol. 105, no. 13, Article ID 136801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Sonde, F. Giannazzo, V. Raineri, and E. Rimini, “Dielectric thickness dependence of capacitive behavior in graphene deposited on silicon dioxide,” Journal of Vacuum Science and Technology B, vol. 27, no. 2, pp. 868–873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Dröscher, P. Roulleau, F. Molitor et al., “Quantum capacitance and density of states of graphene,” Applied Physics Letters, vol. 96, no. 15, Article ID 152104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. S. Kliros, “Modeling of carrier density and quantum capacitance in graphene nanoribbon FETs,” in Proceedings of the International Conference on Microelectronics (ICM '10), pp. 236–239, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Guo, Y. Yoon, and Y. Ouyang, “Gate electrostatics and quantum capacitance of graphene nanoribbons,” Nano Letters, vol. 7, no. 7, pp. 1935–1940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Shylau, J. W. Klos, and I. V. Zozoulenko, “Capacitance of graphene nanoribbons,” Physical Review B, vol. 80, no. 20, 9 pages, 2009. View at Publisher · View at Google Scholar
  29. Y. Ouyang, Y. Yoon, and J. Guo, “Edge chemistry engineering of graphene nanoribbon transistors: a computational study,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '08), December 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Fang, A. Konar, H. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Applied Physics Letters, vol. 91, no. 9, Article ID 092109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Goh and M. Pumera, “Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts,” Electrochemistry Communications, vol. 12, no. 10, pp. 1375–1377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Misra, H. Kalita, M. Waikar, et al., “Multilayer graphene as charge storage layer in floating gate flash memory,” in Proceedings of the 4th IEEE International Memory Workshop (IMW '12), pp. 1–4, 2012.
  33. G. Fiori and G. Iannaccone, “Ultralow-voltage bilayer graphene tunnel FET,” IEEE Electron Device Letters, vol. 30, no. 10, pp. 1096–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Avetisyan, B. Partoens, and F. M. Peeters, “Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates,” Physical Review B, vol. 80, no. 19, Article ID 195401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. V. Castro, K. S. Novoselov, S. V. Morozov et al., “Electronic properties of a biased graphene bilayer,” Journal of Physics Condensed Matter, vol. 22, no. 17, Article ID 175503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, “Electronic states and Landau levels in graphene stacks,” Physical Review B, vol. 73, no. 24, Article ID 245426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Partoens and F. M. Peeters, “From graphene to graphite: electronic structure around the K point,” Physical Review B, vol. 74, no. 7, Article ID 075404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. A. Avetisyan, B. Partoens, and F. M. Peeters, “Stacking order dependent electric field tuning of the band gap in graphene multilayers,” Physical Review B, vol. 81, no. 11, Article ID 115432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kat, Perturbation Theory for Linear Operators, vol. 132, Springer, 1995.
  40. K. F. Mak, J. Shan, and T. F. Heinz, “Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence,” Physical Review Letters, vol. 104, no. 17, Article ID 176404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Bostwick, J. McChesney, T. Ohta, E. Rotenberg, T. Seyller, and K. Horn, “Experimental studies of the electronic structure of graphene,” Progress in Surface Science, vol. 84, no. 11-12, pp. 380–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. D. L. John, L. C. Castro, and D. L. Pulfrey, “Quantum capacitance in nanoscale device modeling,” Journal of Applied Physics, vol. 96, no. 9, pp. 5180–5184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen, “Measurement of the quantum capacitance of interacting electrons in carbon nanotubes,” Nature Physics, vol. 2, no. 10, pp. 687–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. T. Ahmadi, J. F. Webb, N. A. Amin, et al., “Carbon nanotube capacitance model in the degenerate and the non-degenerate regimes,” in Presented at the 4th Global Conference on Power Control and Optimization (PCO '10), Sarawak, Malaysia, 2011.
  45. S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
  46. S. Russo, M. F. Craciun, M. Yamamoto, S. Tarucha, and A. F. Morpurgo, “Double-gated graphene-based devices,” New Journal of Physics, vol. 11, Article ID 095018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Cardano and T. R. Witmer, Ars Magna or the Rules of Algebra, Dover, 1993.
  48. S. Tongay, T. Schumann, X. Miao, B. R. Appleton, and A. F. Hebard, “Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping,” Carbon, vol. 49, no. 6, pp. 2033–2038, 2011. View at Publisher · View at Google Scholar · View at Scopus