About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 135147, 7 pages
http://dx.doi.org/10.1155/2013/135147
Research Article

Application of Flower-Like ZnO Nanorods Gas Sensor Detecting Decomposition Products

Chongqing Electric Power Research Institute, Chongqing 401123, China

Received 21 November 2012; Accepted 3 January 2013

Academic Editor: Wen Zeng

Copyright © 2013 Shudi Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Tang, F. Liu, X. X. Zhang, Q. H. Meng, and J. B. Zhou, “Partial discharge recognition through an analysis of SF6 decomposition products Part 1: decomposition characteristics of SF6 under four different partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 1, pp. 29–36, 2012.
  2. M. Shih, W. J. Lee, and C. Y. Chen, “Decomposition of SF6 and H2S mixture in radio frequency plasma environment,” Industrial and Engineering Chemistry Research, vol. 42, no. 13, pp. 2906–2912, 2003. View at Scopus
  3. J. Tang, F. Liu, X. X. Zhang, Q. H. Meng, and J. G. Tao, “Partial discharge recognition through an analysis of SF6 decomposition products part 2: feature extraction and decision tree-based pattern recognition,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 1, pp. 37–44, 2012.
  4. R. J. Van Brunt and J. T. Herron, “Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges,” IEEE Transactions on Electrical Insulation, vol. 25, no. 1, pp. 75–94, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Shih, W. J. Lee, C. H. Tsai, P. J. Tsai, and C. Y. Chen, “Decomposition of SF6 in an RF plasma environment,” Journal of the Air and Waste Management Association, vol. 52, no. 11, pp. 1274–1280, 2002. View at Scopus
  6. I. Sauers, H. W. Ellis, and L. G. Christophorou, “Neutral decomposition products in spark breakdown of SF6,” IEEE Transactions on Electrical Insulation, vol. EI-21, no. 2, pp. 111–120, 1986. View at Scopus
  7. W. T. Tsai, “The decomposition products of sulfur hexafluoride (SF6): reviews of environmental and health risk analysis,” Journal of Fluorine Chemistry, vol. 128, no. 11, pp. 1345–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Vial, A. M. Casanovas, I. Coll, and J. Casanovas, “Decomposition products from negative and 50 Hz ac corona discharges in compressed SF6 and SF6/N2 (10 : 90) mixtures. Effect of water vapour added to the gas,” Journal of Physics D, vol. 32, no. 14, pp. 1681–1692, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. T. Dervos and P. Vassiliou, “Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation,” Journal of the Air and Waste Management Association, vol. 50, no. 1, pp. 137–141, 2000. View at Scopus
  10. E. Duffour, “Molecular dynamic simulations of the collision between copper ions, SF6 molecules and a polyethylene surface: a study of decomposition products and an evaluation of the self-diffusion coefficients,” Macromolecular Theory and Simulations, vol. 19, no. 2-3, pp. 88–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. I. Baumbach, P. Pilzecker, and E. Trindade, “Monitoring of circuit breakers using ion mobility spectrometry to detect SF6-decomposition,” International Journal for Ion Mobility Spectrometry, vol. 2, no. 1, pp. 35–39, 1999.
  12. R. Kurte, C. Beyer, H. M. Heise, and D. Klockow, “Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition,” Analytical and Bioanalytical Chemistry, vol. 373, no. 7, pp. 639–646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Ding, R. Hayashi, K. Ochi et al., “Analysis of PD-generated SF6 decomposition gases adsorbed on carbon nanotubes,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 6, pp. 1200–1207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Singh, A. Mukherjee, S. K. Sengupta, J. Im, G. W. Peterson, and J. E. Whitten, “Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence,” Applied Surface Science, vol. 258, no. 15, pp. 5778–5785, 2012. View at Publisher · View at Google Scholar
  15. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G. W. Yang, “Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen,” Journal of Physical Chemistry C, vol. 112, no. 17, pp. 6643–6647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Gong, Y. Li, Z. Hu, Z. Zhou, and Y. Deng, “Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers,” Journal of Physical Chemistry C, vol. 114, no. 21, pp. 9970–9974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Liu, J. Zhang, X. Guo, S. Wu, and S. Wang, “Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance,” Nanotechnology, vol. 21, no. 9, Article ID 095501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection,” Journal of Materials Chemistry, vol. 19, no. 16, pp. 2323–2327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. E. Moon, H. Y. Lee, J. Park et al., “Low power consumption and high sensitivity carbon monoxide gas sensor using indium oxide nanowire,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 5, pp. 3189–3192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Zeng, T. Liu, Z. Wang, S. Tsukimoto, M. Saito, and Y. Ikuhara, “Selective detection of formaldehyde gas using a Cd-Doped TiO2-SnO2 sensor,” Sensors, vol. 9, no. 11, pp. 9029–9038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Chen, Z. Wang, D. Han, F. Gu, and G. Guo, “Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing,” Journal of Physical Chemistry C, vol. 115, no. 26, pp. 12763–12773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Oh, H. Y. Choi, S. H. Jung et al., “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation,” Sensors and Actuators B, vol. 141, no. 1, pp. 239–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Zheng, L. Gu, D. Sun, X. Mo, and G. Chen, “The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods,” Materials Science and Engineering B, vol. 166, no. 1, pp. 104–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Wei, L.-H. Pan, X.-C. Dong, and W. Huang, “Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods,” Chinese Physics Letters, vol. 28, no. 8, pp. 702–706, 2011. View at Publisher · View at Google Scholar
  25. C. Wen, Y. Ju, W. Li et al., “Carbon dioxide gas sensor using SAW device based on ZnO film,” Applied Mechanics and Materials, vol. 135-136, pp. 347–352, 2012. View at Publisher · View at Google Scholar
  26. O. Lupan, G. Chai, and L. Chow, “Novel hydrogen gas sensor based on single ZnO nanorod,” Microelectronic Engineering, vol. 85, no. 11, pp. 2220–2225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Zeng, T. Liu, and Z. Wang, “Enhanced gas sensing properties by SnO2 nanosphere functionalized TiO2 nanobelts,” Journal of Materials Chemistry, vol. 22, no. 8, pp. 3544–3548, 2012. View at Publisher · View at Google Scholar
  28. J. Kim and K. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” Journal of Physical Chemistry C, vol. 115, no. 15, pp. 7218–7224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Velasco-Arias, D. Díaz, P. Santiago-Jacinto, G. Rodríguez-Gattorno, A. Vázquez-Olmos, and S. E. Castillo-Blum, “Direct interaction of colloidal nanostructured ZnO and SnO2 with NO and SO2,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 12, pp. 6389–6397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Qi, T. Zhang, Q. Yu et al., “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B, vol. 133, no. 2, pp. 638–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-W. Ahn, K.-S. Park, J.-H. Heo et al., “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” Applied Physics Letters, vol. 93, no. 26, Article ID 263103, 2008. View at Publisher · View at Google Scholar
  32. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, “On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity,” Sensors and Actuators B, vol. 138, no. 1, pp. 168–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Zhang, S. Wang, M. Xu et al., “Hierarchically porous ZnO architectures for gas sensor application,” Crystal Growth and Design, vol. 9, no. 8, pp. 3532–3537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Yuan, X. Jiaqiang, X. Qun, L. Hui, P. Qingyi, and X. Pengcheng, “Brush-like hierarchical zno nanostructures: synthesis, photoluminescence and gas sensor properties,” Journal of Physical Chemistry C, vol. 113, no. 9, pp. 3430–3435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Zhang, X. Liu, S. Wu, B. Cao, and S. Zheng, “One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance,” Sensors and Actuators B, vol. 169, pp. 61–66, 2012. View at Publisher · View at Google Scholar