About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 136145, 9 pages
http://dx.doi.org/10.1155/2013/136145
Research Article

Synthesis of Nanosized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan 717, Taiwan

Received 22 August 2012; Revised 21 December 2012; Accepted 23 December 2012

Academic Editor: Jinquan Wei

Copyright © 2013 Jian-Wen Wang and Yi-Ming Kuo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Watabe, T. Hujioka, N. Yamaga et al., “Application of micro-electrochemical CO sensor using solid electrolyte to fire detection,” in Digest of the 15th Chemical Sensor Symposium B, vol. 8, pp. 53–56, 1992.
  2. EN 54 Standard, Fire Detection and Fire Alarm Systems, Part 7, British Standards Institute, 2001.
  3. B. C. Hagen and J. A. Milke, “Use of gaseous fire signatures as a mean to detect fires,” Fire Safety Journal, vol. 34, no. 1, pp. 55–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Du, R. C. Zhang, X. Y. Huang, X. Gong, and X. H. Zhang, “Research on early fire detection with CO-CO2 FTIR-spectroscopy,” Spectroscopy and Spectral Analysis, vol. 27, no. 5, pp. 899–903, 2007. View at Scopus
  5. J. H. Sung, Y. S. Lee, J. W. Lim, Y. H. Hong, and D. D. Lee, “Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method,” Sensors and Actuators, B, vol. 66, no. 1–3, pp. 149–152, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Nellia, U. G. Fagliaa, G. Sberveglieria et al., “The aging effect on SnO2-Au thin film sensors: electrical and structural characterization,” Thin Solid Films, vol. 371, no. 1-2, pp. 249–253, 2000. View at Publisher · View at Google Scholar
  7. K. Fukui and S. Nishida, “A theoretical treatment of molecular complexes i silver-aromatic hydrocarbon complexes,” Bulletin of the Chemical Society of Japan, vol. 34, pp. 1076–1080, 1961. View at Publisher · View at Google Scholar
  8. W. K. Hu, X. P. Gao, M. M. Geng, Z. X. Gong, and D. Noréus, “Synthesis of CoOOH nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5392–5394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Jansson, A. E. C. Palmqvist, E. Fridell et al., “On the catalytic activity of Co3O4 in low-temperature CO oxidation,” Journal of Catalysis, vol. 211, no. 2, pp. 387–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Grillo, M. M. Natile, and A. Glisenti, “Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface,” Applied Catalysis B, vol. 48, no. 4, pp. 267–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Mountford, “A sprinkler in the works,” Fire Prevention, no. 366, pp. 48–49, 2003. View at Scopus
  12. S. Zhuiykov and V. Dowling, “The nanostructured Au-doped cobalt oxyhydroxide based carbon monoxide sensor for fire detection at its earlier stages,” Measurement Science and Technology, vol. 19, no. 2, Article ID 024001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Geng, F. Zhan, H. Jiang, Z. Xing, and C. Fang, “Facile production of self-assembly hierarchical dumbbell-like CoOOH nanostructures and their room-temperature CO-gas-sensing properties,” Crystal Growth and Design, vol. 8, no. 10, pp. 3497–3500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Shimizu and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors,” MRS Bulletin, vol. 24, no. 6, pp. 18–24, 1999. View at Scopus
  15. N. Bahlawane, P. A. Premkumar, J. Feldmann, and K. Kohse-Höinghaus, “Preparation of doped spinel cobalt oxide thin films and evaluation of their thermal stability,” Chemical Vapor Deposition, vol. 13, no. 2-3, pp. 118–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. U. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, “Sensing properties of SnO2-Co3O4 composites to CO and H2,” Sensors and Actuators, B, vol. 98, no. 2-3, pp. 166–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Jayanthi, S. Chawla, K. N. Sood, M. Chhibara, and S. Singh, “Dopant induced morphology changes in ZnO nanocrystals,” Applied Surface Science, vol. 255, no. 11, pp. 5869–5875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Chi, H. Lin, and J. Li, “Cations distribution of CuxCo3-xO4 and its electrocatalytic activities for oxygen evolution reaction,” International Journal of Hydrogen Energy, vol. 33, no. 18, pp. 4763–4768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. J. Wu, J. G. Wu, T. K. Tsai, and C. T. Yeh, “Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures,” Sensors and Actuators, B, vol. 120, no. 1, pp. 104–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Tobias Johnsson Wass, I. Panas, J. Ásbjörnsson, and E. Ahlberg, “Quantum chemical modelling of oxygen reduction on cobalt hydroxide and oxyhydroxide,” Journal of Electroanalytical Chemistry, vol. 599, no. 2, pp. 295–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sensors and Actuators, B, vol. 115, no. 1, pp. 247–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Wu, W. C. Chang, K. M. Tsai, and J. G. Wu, “The Novel CO sensing material CoOOH-WO3 with Au and SWCNT performance enhancement,” Sensors and Actuators, B, vol. 138, no. 1, pp. 35–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Zhuiykov, “Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films,” Sensors and Actuators, B, vol. 129, no. 1, pp. 431–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, “Improved H2 sensing properties of Co-doped SnO2 nanofibers,” Sensors and Actuators, B, vol. 150, no. 2, pp. 806–810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Singh, C. Yan, and P. S. Lee, “Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors,” Sensors and Actuators, B, vol. 150, no. 1, pp. 19–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. NF X 70-100 French Standard, “Fire Tests: analysis of pyrolysis and combustion gases,” ANFOR, pp. 51, 1986.
  27. R. A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapour response,” Nature Photonics, vol. 1, no. 2, pp. 123–128, 2007. View at Publisher · View at Google Scholar · View at Scopus