About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 152079, 7 pages
http://dx.doi.org/10.1155/2013/152079
Research Article

pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures

1Department of Electronics Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
2Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan
3Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

Received 12 May 2013; Accepted 5 August 2013

Academic Editor: Tifeng Jiao

Copyright © 2013 Jyh-Liang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. P. Bergveld, “Development of an ion sensitive solid-state device for neurophysiological measurement,” IEEE Transactions on Biomedical Engineering, vol. 17, no. 1, pp. 70–71, 1970. View at Scopus
  2. M.-N. Niu, X.-F. Ding, and Q.-Y. Tong, “Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs,” Sensors and Actuators B, vol. 37, no. 1-2, pp. 13–17, 1996. View at Scopus
  3. L. Bousse, H. H. van den Vlekkert, and N. F. de Rooij, “Hysteresis in Al2O3-gate ISFETs,” Sensors and Actuators B, vol. 2, no. 2, pp. 103–110, 1990. View at Scopus
  4. J.-C. Chou, J.-L. Chiang, and W. U. Chin-Lung, “PH and procaine sensing characteristics of extended-gate field-effect transistor based on indium tin oxide glass,” Japanese Journal of Applied Physics 1, vol. 44, no. 7, pp. 4838–4842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. H. Chou, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Differential type solid-state urea biosensors based on ion-selective electrodes,” Sensors and Actuators B, vol. 130, no. 1, pp. 359–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. van der spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators, vol. 4, pp. 291–298, 1983. View at Scopus
  7. J.-L. Chiang, J.-C. Chou, and Y.-C. Chen, “Study of the pH-ISFET and EnFET for biosensor applications,” Journal of Medical and Biological Engineering, vol. 21, no. 3, pp. 135–146, 2001. View at Scopus
  8. L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Materials Chemistry and Physics, vol. 70, no. 1, pp. 12–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-C. Chou and C.-W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs,” IEEE Sensors Journal, vol. 9, no. 3, pp. 277–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. D. Batista and M. Mulato, “Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor,” Journal of Materials Science, vol. 45, no. 20, pp. 5478–5481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Applied Physics Letters, vol. 87, no. 14, Article ID 143508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. Batista, M. Mulato, C. F. D. O. Graeff, F. J. R. Fernandez, and F. D. C. Marques, “SnO2 extended gate field-effect transistor as pH sensor,” Brazilian Journal of Physics, vol. 36, no. 2, pp. 478–481, 2006. View at Scopus
  13. J. C. Chou and D. J. Tzeng, “Study on the characteristics of the ruthenium oxide pH electrode,” Rare Metal Materials and Engineering, vol. 35, p. 256, 2006.
  14. E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method,” Solid State Sciences, vol. 11, no. 2, pp. 456–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, H. B. Jia, and D. P. Yu, “Stable field emission from tetrapod-like ZnO nanostructures,” Applied Physics Letters, vol. 85, no. 4, pp. 636–638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Zhao, H. Z. Zhang, Y. W. Zhu et al., “Morphological effects on the field emission of ZnO nanorod arrays,” Applied Physics Letters, vol. 86, no. 20, Article ID 203115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. S. Ramgir, I. S. Mulla, K. Vijayamohanan et al., “Ultralow threshold field emission from a single multipod structure of ZnO,” Applied Physics Letters, vol. 88, no. 4, Article ID 042107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. F. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, and L. W. Estrada, “Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour,” Thin Solid Films, vol. 373, no. 1-2, pp. 137–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. R.-C. Wang, C.-P. Liu, J.-L. Huang, and S.-J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature,” Applied Physics Letters, vol. 88, no. 2, Article ID 023111, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Y. Bae, H. W. Seo, and J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” Journal of Physical Chemistry B, vol. 108, no. 17, pp. 5206–5210, 2004. View at Scopus
  21. J. Zhong, S. Muthukumar, Y. Chen et al., “Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 83, no. 16, pp. 3401–3403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis,” Solid-State Electronics, vol. 52, no. 2, pp. 294–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P.-Y. Yang, J.-L. Wang, P.-C. Chiu et al., “PH sensing characteristics of extended-gate field-effect transistor based on al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1603–1605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P.-Y. Yang, J.-L. Wang, W.-C. Tsai et al., “Field-emission characteristics of Al-doped ZnO nanostructures hydrothermally synthesized at low temperature,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 7, pp. 6013–6019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. W. Kim, M. A. Kebede, and H. S. Kim, “Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers,” Current Applied Physics, vol. 10, no. 1, pp. 60–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, NY, USA, 2nd edition, 1981.
  27. X. T. Hao, J. Ma, D. H. Zhang et al., “Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates,” Applied Surface Science, vol. 183, no. 1-2, pp. 137–142, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Kim, J. S. Horwitz, G. Kushto et al., “Effect of film thickness on the properties of indium tin oxide thin films,” Journal of Applied Physics, vol. 88, no. 10, pp. 6021–6025, 2000. View at Scopus
  29. S. Al-Hilli and M. Willander, “The pH response and sensing mechanism of n-type ZnO/electrolyte interfaces,” Sensors, vol. 9, no. 9, pp. 7445–7480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. L. Van Meirhaeghe, F. Cardon, and W. P. Gomes, “A quantitative expression for partial Fermi level pinning at semiconductor/redox electrolyte interfaces,” Journal of Electroanalytical Chemistry, vol. 188, no. 1-2, pp. 287–291, 1985. View at Scopus
  31. S. Jamasb, S. Collins, and R. L. Smith, “A physical model for drift in pH ISFETs,” Sensors and Actuators B, vol. B49, no. 1-2, pp. 146–155, 1998. View at Scopus