About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 193725, 9 pages
http://dx.doi.org/10.1155/2013/193725
Research Article

Investigating the Formation Process of Sn-Based Lead-Free Nanoparticles with a Chemical Reduction Method

1Laboratory for Microstructures, Shanghai University, 99 Shangda Road, Shanghai 200436, China
2School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
3Department of Chemistry & Biochemistry, The Florida State University, Tallahassee, FL 32306-4390, USA

Received 22 October 2012; Revised 15 January 2013; Accepted 29 January 2013

Academic Editor: Xuedong Bai

Copyright © 2013 Weipeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Arenas, M. He, and V. L. Acoff, “Effect of flux on the wetting characteristics of SnAg, SnCu, SnAgBi, and SnAgCu lead-free solders on copper substrates,” Journal of Electronic Materials, vol. 35, no. 7, pp. 1530–1536, 2006. View at Scopus
  2. J. H. Lee and Y. B. Park, “Abnormal failure behavior of Sn-3.5Ag solder bumps under excessive electric current stressing conditions,” Journal of Electronic Materials, vol. 38, no. 10, pp. 2194–2200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. M. Hung and C. M. Chen, “Electromigration of Sn-9wt.%Zn solder,” Journal of Electronic Materials, vol. 37, no. 6, pp. 887–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Guo, G. Xu, H. He, M. Zhao, J. Sun, and C. H. Wang, “Effect of electromigration and isothermal aging on the formation of metal whiskers and hillocks in eutectic Sn-Bi solder joints and reaction films,” Journal of Electronic Materials, vol. 38, no. 12, pp. 2647–2658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Y. Guo, J. D. Guo, and J. K. Shang, “Influence of thermal cycling on the thermal resistance of solder interfaces,” Journal of Electronic Materials, vol. 38, no. 12, pp. 2470–2478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Ohnuma, M. Miyashita, K. Anzai et al., “Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys,” Journal of Electronic Materials, vol. 29, no. 10, pp. 1137–1144, 2000. View at Scopus
  7. T. Siewert, S. Liu, D. R. Smith, and J. C. Madeni, “Database for solder properties with emphasis on new lead-free solders,” NIST & Colorado School of Mines, Release, vol. 4, 2002.
  8. P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A, vol. 13, no. 6, pp. 2287–2298, 1976. View at Publisher · View at Google Scholar · View at Scopus
  9. W. A. Jesser, G. J. Shiflet, G. L. Allen, and J. L. Crawford, “Equilibrium phase diagrams of isolated nano-phases,” Materials Research Innovations, vol. 2, no. 4, pp. 211–216, 1999. View at Scopus
  10. J. Lee, J. Lee, T. Tanaka, H. Mori, and K. Penttilä, “Phase diagrams of nanometer-sized particles in binary systems,” Journal of Management, vol. 57, no. 3, pp. 56–59, 2005. View at Scopus
  11. M. Lučić Lavčević and Z. Ogorelec, “Melting and solidification of Sn-clusters,” Materials Letters, vol. 57, pp. 4134–4139, 2003.
  12. C. R. M. Wronski, “The size dependence of the melting point of small particles of tin,” British Journal of Applied Physics, vol. 18, no. 12, pp. 1731–1737, 1967. View at Publisher · View at Google Scholar · View at Scopus
  13. W. A. Jesser, R. Z. Shneck, and W. W. Gile, “Solid-liquid equilibria in nanoparticles of Pb-Bi alloys,” Physical Review B, vol. 69, no. 14, Article ID 144121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Benjamin, “Dispersion strengthened superalloys by mechanical alloying,” Metallurgical Transactions, vol. 1, no. 10, pp. 2943–2951, 1970. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Birringer, H. Gleiter, H. P. Klein, and P. Marquardt, “Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?” Physics Letters A, vol. 102, no. 8, pp. 365–369, 1984. View at Scopus
  16. I. T. H. Chang and Z. Ren, “Simple processing method and characterisation of nanosized metal powders,” Materials Science and Engineering A, vol. 375-377, no. 1-2, pp. 66–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. H. Bernard Ng, J. Yang, and W. Y. Fan, “Synthesis and self-assembly of one-dimensional sub-10 nm Ag nanoparticles with cyclodextrin,” Journal of Physical Chemistry C, vol. 112, no. 11, pp. 4141–4145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H. J. Jiang, K. S. Moon, and C. P. Wong, “Tin/silver/copper alloy nanoparticle pastes for low temperature lead-free interconnect applications,” in Proceedings of the 58th Electronic Components and Technology Conference (ECTC '08), pp. 1400–1404, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Y. Hsiao and J. G. Duh, “Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x = 0.2, 0.5, 1.0) alloy nanoparticles-by the chemical reduction method,” Journal of the Electrochemical Society, vol. 152, no. 9, pp. J105–J109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Jiang, K. S. Moon, F. Hua, and C. P. Wong, “Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders,” Chemistry of Materials, vol. 19, no. 18, pp. 4482–4485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Y. Hsiao and J. G. Duh, “Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5Ag-0.5Cu nanoparticles by a chemical reduction method,” Journal of Electronic Materials, vol. 35, no. 9, pp. 1755–1760, 2006. View at Scopus
  22. X. Yang, Q. Wang, Y. Tao, and H. Xu, “A modified method to prepare diselenides by the reaction of selenium with sodium borohydride,” Journal of Chemical Research, no. 4, pp. 160–161, 2002. View at Scopus
  23. C. Zou, Y. Gao, B. Yang, and Q. Zhai, “Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression,” Journal of Materials Science, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Lee, R. Scholz, K. Nielsch, and U. Gösele, “A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes,” Angewandte Chemie, vol. 44, no. 37, pp. 6050–6054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Wang, X. Zhang, X. Qian, W. Wang, and Y. Qian, “Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution,” Materials Research Bulletin, vol. 33, no. 7, pp. 1083–1086, 1998. View at Scopus
  26. X. F. Qian, J. Yin, S. Feng, S. H. Liu, and Z. K. Zhu, “Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles,” Journal of Materials Chemistry, vol. 11, no. 10, pp. 2504–2506, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Y. Robin, J. L. Sagué, and K. M. Fromm, “On the coordination behaviour of NO3 in coordination compounds with Ag+: part 1. Solubility effect on the formation of coordination polymer networks between AgNO3 and L (L = ethanediyl bis(isonicotinate) as a function of solvent,” CrystEngComm, vol. 8, no. 5, pp. 403–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Szymańska-Chargot, A. Gruszecka, A. Smolira et al., “Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. 66–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Corrias, G. Ennas, G. Licheri, G. Marongiu, and G. Paschina, “Amorphous metallic powders prepared by chemical reduction of metal ions with potassium borohydride in aqueous solution,” Chemistry of Materials, vol. 2, no. 4, pp. 363–366, 1990. View at Scopus
  30. D. Zeng and M. J. Hampden-Smith, “Synthesis and characterization of nanophase group 6 metal (M) and metal carbide (M2C) powders by chemical reduction methods,” Chemistry of Materials, vol. 5, no. 5, pp. 681–689, 1993. View at Scopus
  31. L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, “Synthesis and study of silver nanoparticles,” Journal of Chemical Education, vol. 84, pp. 322–325, 2007.
  32. R. G. Reifler and B. F. Smets, “Enzymatic reduction of 2,4,6-trinitrotoluene and related nitroarenes: kinetics linked to one-electron redox potentials,” Environmental Science and Technology, vol. 34, no. 18, pp. 3900–3906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. O. S. Ivanova and F. P. Zamborini, “Size-dependent electrochemical oxidation of silver nanoparticles,” Journal of the American Chemical Society, vol. 132, no. 1, pp. 70–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. P. Janssen and J. Moolhuysen, “State and action of the tin atoms in platinum-tin catalysts for methanol fuel cells,” Journal of Catalysis, vol. 46, no. 3, pp. 289–296, 1977. View at Scopus
  35. F. Kooli, V. Rives, and W. Jones, “Reduction of Ni2+-Al3+ and Cu2+-Al3+ layered double hydroxides to metallic Ni0 and Cu0 via polyol treatment,” Chemistry of Materials, vol. 9, no. 10, pp. 2231–2235, 1997. View at Scopus
  36. R. Qiu, X. L. Zhang, R. Qiao, Y. Li, Y. I. Kim, and Y. S. Kang, “CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor,” Chemistry of Materials, vol. 19, no. 17, pp. 4174–4180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. V. K. Lamer and R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” Journal of the American Chemical Society, vol. 72, no. 11, pp. 4847–4854, 1950. View at Scopus
  38. M. A. Watzky and R. G. Finke, “Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth,” Journal of the American Chemical Society, vol. 119, no. 43, pp. 10382–10400, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Yu, P. C. Gibbons, K. F. Kelton, and W. E. Buhro, “Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles,” Journal of the American Chemical Society, vol. 123, no. 37, pp. 9198–9199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Schmid, H. West, J. O. Malm, J. O. Bovin, and C. Grenthe, “Catalytic properties of layered gold-palladium colloids,” Angewandte Chemie, vol. 35, no. 17, pp. 1099–1103, 1996. View at Scopus
  41. Y. Luo, Y. Sun, U. Schwarz, and M. Armbrüster, “Systematic exploration of synthesis pathways to nanoparticulate ZnPd,” Chemistry of Materials, vol. 24, pp. 3094–3100, 2012.
  42. W. W. Brandt, F. P. Dwyer, and E. C. Gyarfas, “Chelate complexes of 1,10-phenanthroline and related compounds,” Chemical Reviews, vol. 54, no. 6, pp. 959–1017, 1954. View at Scopus
  43. J. Ferguson, C. J. Hawkins, N. A. P. Kane-Maguire, and H. Lip, “Absolute configurations of 1,10-phenanthroline and 2,2′-bipyridine metal complexes,” Inorganic Chemistry, vol. 8, no. 4, pp. 771–779, 1969. View at Scopus
  44. J. Gallagher, C. H. B. Chen, C. Q. Pan, D. M. Perrin, Y. M. Cho, and D. S. Sigman, “Optimizing the targeted chemical nuclease activity of 1,10- phenanthroline-copper by ligand modification,” Bioconjugate Chemistry, vol. 7, no. 4, pp. 413–420, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. N. H. Jang, J. S. Suh, and M. Moskovits, “Effect of surface geometry on the photochemical reaction of 1,10-phenanthroline adsorbed on silver colloid surfaces,” Journal of Physical Chemistry B, vol. 101, no. 41, pp. 8279–8285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. M. C. Lim, E. Sinn, and R. B. Martin, “Crystal structure of a mixed-ligand complex of copper(II), 1,10-phenanthroline, and glycylglycine dianion: glycylglycinato(1,10-phenanthroline)copper(II) trihydrate,” Inorganic Chemistry, vol. 15, no. 4, pp. 807–811, 1976. View at Scopus
  47. M. Muniz-Miranda, “Surface enhanced Raman scattering and normal coordinate analysis of 1,10-phenanthroline adsorbed on silver sols,” Journal of Physical Chemistry A, vol. 104, no. 33, pp. 7803–7810, 2000. View at Scopus
  48. C. Pettinari, M. Pellei, M. Miliani et al., “Tin(IV) and organotin(IV) complexes containing mono or bidentate N-donor ligands : III.1 1-methylimidazole derivatives: synthesis, spectroscopic and structural characterization,” Journal of Organometallic Chemistry, vol. 553, no. 1-2, pp. 345–369, 1998. View at Scopus
  49. S. Sarkar, M. Pradhan, A. K. Sinha, M. Basu, and T. Pal, “Chelate effect in surface enhanced Raman scattering with transition metal nanoparticles,” The Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 439–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. D. S. Sigman, “Nuclease activity of 1,10-phenanthroline-copper ion,” Accounts of Chemical Research, vol. 19, no. 6, pp. 180–186, 1986. View at Scopus
  51. Y. Wang and J. Y. Lee, “Molten salt synthesis of tin oxide nanorods: morphological and electrochemical features,” Journal of Physical Chemistry B, vol. 108, no. 46, pp. 17832–17837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Wang, J. Y. Lee, and T. C. Deivaraj, “Controlled synthesis of V-shaped SnO2 nanorods,” Journal of Physical Chemistry B, vol. 108, no. 36, pp. 13589–13593, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Yoon, M. D. Kuwabara, A. Spassky, and D. S. Sigman, “Sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion,” Biochemistry, pp. 2116–2121, 1990. View at Scopus
  54. I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” Journal of Physics and Chemistry of Solids, vol. 19, no. 1-2, pp. 35–50, 1961. View at Scopus
  55. C. Wagner, “Theorie der alterung von niederschlägen durch umlösen (Ostwald-Reifung),” Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Physikalische Chemie, vol. 65, pp. 581–591, 1961.
  56. H. W. Sheng, G. Wilde, and E. Ma, “The competing crystalline and amorphous solid solutions in the Ag-Cu system,” Acta Materialia, vol. 50, no. 3, pp. 475–488, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. P. R. Subramanian and J. H. Perepezko, “The ag-cu (silver-copper) system,” Journal of Phase Equilibria, vol. 14, no. 1, pp. 62–75, 1993. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Hirai and A. Kumar, “Wavelength tuning of surface plasmon resonance by annealing silver-copper nanoparticles,” Journal of Applied Physics, vol. 100, no. 1, Article ID 014309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Kim, E. A. Stach, and C. A. Handwerker, “Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles,” Applied Physics Letters, vol. 96, no. 14, Article ID 144101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. I. Vesnin and Y. V. Shubin, “Equilibrium solid solubilities in the Ag-Cu system by X-ray diffractometry,” Journal of Physics F, vol. 18, no. 11, pp. 2381–2386, 1988. View at Publisher · View at Google Scholar · View at Scopus