About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 195325, 17 pages
http://dx.doi.org/10.1155/2013/195325
Review Article

Technical Solutions to Mitigate Reliability Challenges due to Technology Scaling of Charge Storage NVM

Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia

Received 30 April 2013; Accepted 11 July 2013

Academic Editor: Ugur Serincan

Copyright © 2013 Meng Chuan Lee and Hin Yong Wong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IBM, “What is big data?” http://www-01.ibm.com/software/data/bigdata/.
  2. International Technology Roadmap for Semiconductors, Release, 2011, http://www.itrs.net/home.html.
  3. G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kim and G. Jeong, “Memory technologies for sub-40 nm node,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '07), pp. 27–30, Washington, DC, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Kim, “Future memory technology: challenges and opportunities,” in Proceedings of the International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA '08), pp. 5–9, Hsinchu, Taiwan, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Pellizzer and R. Bez, “Non-volatile semiconductor memories for nano-scale technology,” in Proceedings of the 10th IEEE Conference on Nanotechnology (NANO '10), pp. 21–24, Seoul, South Korea, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Kim, “Technology challenges for deep-nano semiconductor,” in Proceedings of the IEEE International Memory Workshop (IMW '10), pp. 1–2, Seoul, South Korea, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T.-C. Chen, “Challenges for silicon technology scaling in the Nanoscale Era,” in Proceedings of the 39th European Solid-State Device Research Conference (ESSDERC '09), pp. 1–7, Athens, Greece, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Kinam and C. Jungdal, “Future outlook of NAND flash technology for 40 nm node and beyond,” in Proceedings of the 21st IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW '06), pp. 9–11, Monterey, Calif, USA, February 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Wellekens and J. Van Houdt, “The future of flash memory: is floating gate technology doomed to lose the race?” in Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology (ICICDT '08), pp. 189–194, Austin, Tex, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kinam, “Memory technologies for 50 nm and beyond,” in Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT '06), pp. 685–688, Shanghai, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Koh, “NAND flash scaling beyond 20 nm,” in Proceedings of the IEEE International Memory Workshop (IMW '09), pp. 1–3, Monterey, Calif, USA, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Kim, J. H. Choi, J. Choi, and H.-S. Jeong, “The future prospect of nonvolatile memory,” in Proceedings of the IEEE International Symposium on VLSI Technology (VLSI-TSA-TECH '05), pp. 88–94, April 2005. View at Scopus
  14. K. Prall, “Scaling non-volatile memory below 30 nm,” in Proceedings of the 22nd IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW '07), pp. 5–10, Monterey, Calif, USA, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Kwak, J. Park, K. Kim et al., “Integration technology of 30 nm generation multi-level NAND flash for 64 Gb NAND flash memory,” in Proceedings of the Symposium on VLSI Technology (VLSIT '07), pp. 12–13, Kyoto, Japan, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Xuan, M. She, B. Harteneck, A. Liddle, J. Bokor, and T.-J. King, “FinFET SONOS flash memory for embedded applications,” in Proceedings of the IEEE International Electron Devices Meeting, pp. 609–612, December 2003. View at Scopus
  17. T.-H. Hsu, H. T. Lue, Y.-C. King et al., “A high-performance body-tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-type flash memory,” IEEE Electron Device Letters, vol. 28, no. 5, pp. 443–445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-T. Lue, Y.-H. Hsiao, P.-Y. Du et al., “A novel buried-channel FinFET BE-SONOS NAND Flash with improved memory window and cycling endurance,” in Proceedings of the Symposium on VLSI Technology (VLSIT '09), pp. 224–225, June 2009. View at Scopus
  19. T.-H. Hsu, H.-T. Lue, W.-C. Peng et al., “A study of sub-40 nm FinFET BE-SONOS NAND flash,” in Proceedings of the Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design (NVSMW/ICMTD '08), pp. 115–116, Opio, France, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Yaegashi, “The important challenge to optimize the double patterning process toward 22 nm node and beyond,” in Proceedings of the International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA '11), pp. 1–3, Hsinchu, Taiwan, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, “Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials,” IEEE Transactions on Electron Devices, vol. 51, no. 5, pp. 714–719, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kim and S. J. Ahn, “Reliability investigations for manufacturable high density PRAM,” in Proceedings of the 43rd Annual IEEE International Reliability Physics Symposium Proceedings, pp. 157–162, April 2005. View at Scopus
  23. H.-S. P. Wong, S. Raoux, S. Kim et al., “Phase change memory,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Fugazza, D. Ielmini, S. Lavizzari, and A. L. Lacaita, “Random telegraph signal noise in phase change memory devices,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 743–749, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Ielmini, D. Sharma, S. Lavizzari, and A. L. Lacaita, “Reliability impact of chalcogenide-structure relaxation in phase-change memory (PCM) cells-Part I: experimental study,” IEEE Transactions on Electron Devices, vol. 56, no. 5, pp. 1070–1077, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Lavizzari, D. Ielmini, D. Sharma, and A. L. Lacaita, “Reliability impact of chalcogenide-structure relaxation in phase-change memory (PCM) cells-Part II: physics-Based Modeling,” IEEE Transactions on Electron Devices, vol. 56, no. 5, pp. 1078–1085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Kim, B. Lee, M. Asheghi et al., “Thermal disturbance and its impact on reliability of phase-change memory studied by the Micro-Thermal stage,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 99–103, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kim, B. Lee, M. Asheghi et al., “Resistance and threshold switching voltage drift behavior in phase-change memory and their temperature dependence at microsecond time scales studied using a micro-thermal stage,” IEEE Transactions on Electron Devices, vol. 58, no. 3, pp. 584–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Bae, K. M. Hwang, K. H. Park et al., “Investigation on physical origins of endurance failures in PRAM,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '12), pp. EM. 7. 1–EEM. 7. 4, April 2012.
  30. J. E. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using NVM Devices, Wiley Interscience, Hoboken, NJ, USA, 2008.
  31. R. Bez, “Chalcogenide PCM: a memory technology for next decade,” in Proceedings of the International Electron Devices Meeting (IEDM '09), pp. 1–4, Baltimore, Md, USA, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Bez and P. Cappelletti, “Emerging memory technology perspective,” in Proceedings of Technical Program of VLSI Technology, System and Application (VLSI '12), pp. 1–2, 2012.
  33. G. Servalli, “A 45nm generation phase change memory technology,” in Proceedings of the International Electron Devices Meeting (IEDM '09), pp. 1–4, Baltimore, Md, USA, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. F. Close, U. Frey, J. Morrish et al., “A 256-Mcell phase-change memory chip operating at 2+ bit/cell,” IEEE Transactions on Circuits and Systems, vol. 60, no. 6, pp. 1–13, 2013.
  35. J. D. Maimon, K. K. Hunt, L. Burcin, and J. Rodgers, “Chalcogenide memory arrays: characterization and radiation effects,” IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 1878–1884, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bernacki, K. Hunt, S. Tyson, S. Hudgens, B. Pashmakov, and W. Czubatyj, “Total dose radiation response and high temperature imprint characteristics of chalcogenide based RAM resistor elements,” IEEE Transactions on Nuclear Science, vol. 47, no. 6, pp. 2528–2533, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kwon, D. H. Kang, K. H. Lee, Y. K. Park, and C. H. Chung, “Analysis of intrinsic variation of data retention in phase-change memory using phase-field method,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 411–413, 2013.
  38. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, “A silicon nanocrystals based memory,” Applied Physics Letters, vol. 68, no. 10, pp. 1377–1379, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” in Proceedings of the International Electron Devices Meeting (IEDM '95), pp. 521–524, December 1995. View at Scopus
  40. T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, “Developments in nanocrystal memory,” Materials Today, vol. 14, no. 12, pp. 608–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. De Blauwe, “Nanocrystal nonvolatile memory devices,” IEEE Transactions on Nanotechnology, vol. 1, no. 1, pp. 72–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory,” IEEE Transactions on Electron Devices, vol. 43, no. 9, pp. 1553–1558, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. M. She and T.-J. King, “Impact of crystal size and tunnel dielectric on semiconductor nanocrystal memory performance,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1934–1940, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. R. A. Rao, H. P. Gasquet, R. F. Steimle et al., “Influence of silicon nanocrystal size and density on the performance of non-volatile memory arrays,” Solid-State Electronics, vol. 49, no. 11, pp. 1722–1727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Monzio Compagnoni, D. Ielmini, A. S. Spinelli, A. L. Lacaita, C. Previtali, and C. Gerardi, “Study of data retention for nanocrystal Flash memories,” in Proceedings of the IEEE International Reliability Physics Symposium Proceedings, pp. 506–512, April 2003. View at Scopus
  46. K.-M. Chang, “Silicon nanocrystal memory—technology and applications,” in Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology (ICSICT '06), pp. 725–728, Shanghai, China, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Y. Qian, K. J. Chen, Y. F. Wang et al., “The role of nitridation of nc-Si dots for improving performance of nc-Si nonvolatile memory,” Journal of Non-Crystalline Solids, vol. 358, no. 17, pp. 2344–2347, 2012.
  48. B. De Salvo, C. Gerardi, S. Lombardo et al., “How far will Silicon nanocrystals push the scaling limits of NVMs technologies?” in Proceedings of the IEEE International Electron Devices Meeting, pp. 597–600, December 2003. View at Scopus
  49. D.-W. Kim, T. Kim, and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1823–1829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. R. F. Steimle, R. Rao, M. Sadd et al., “Silicon nanocrystals: from coulomb blockade to memory arrays,” in Proceedings of the 4th IEEE Conference on Nanotechnology, pp. 290–292, August 2004. View at Scopus
  51. R. F. Steimle, R. Muralidhar, R. Rao et al., “Silicon nanocrystal non-volatile memory for embedded memory scaling,” Microelectronics Reliability, vol. 47, no. 4-5, pp. 585–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. B. De Salvo, C. Gerardi, R. Van Schaijk et al., “Performance and reliability Features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS),” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 377–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Monzio Compagnoni, D. Ielmini, A. S. Spinelli et al., “Program/erase dynamics and channel conduction in nanocrystal memories,” in Proceedings of the IEEE International Electron Devices Meeting, pp. 549–552, Washington, DC, USA, December 2003. View at Scopus
  54. A. Gasperin, E. Amat, M. Porti et al., “Effects of the localization of the charge in nanocrystal memory cells,” IEEE Transactions on Electron Devices, vol. 56, no. 10, pp. 2319–2326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Cester, N. Wrachien, A. Gasperin, A. Paccagnella, R. Portoghese, and C. Gerardi, “Radiation tolerance of nanocrystal-based flash memory arrays against heavy ion irradiation,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2196–2203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y.-H. Lin and C.-H. Chien, “Nanoscale 2-bit/cell HfO2 nanocrystal flash memory,” IEEE Transactions on Nanotechnology, vol. 11, no. 2, pp. 412–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. P.-H. Cheng, S.-H. Huang, and F.-M. Wu, “Study of memory performance and electrical characteristics for metal nanocrystal memories,” IEEE Transactions on Nanotechnology, vol. 11, no. 1, pp. 164–171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Wang, C. Lin, P. Huang, L. Chang, and C. Lai, “Ultra-fast BNCs with a new multilevel operation,” in Proceedings of the International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA '13), vol. 58, pp. 1–2, 2013.
  59. S. Gerardin, M. Bagatin, A. Paccagnella, A. Visconti, and E. Greco, “Heavy-ion induced threshold voltage shifts in sub 70-nm charge-trap memory cells,” IEEE Transactions on Nuclear Science, vol. 58, no. 3, pp. 827–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, “Variot: a novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices,” IEEE Electron Device Letters, vol. 24, no. 2, pp. 99–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. H.-T. Lue, S.-Y. Wang, E.-K. Lai et al., “BE-SONOS: a bandgap engineered SONOS with excellent performance and reliability,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '05), pp. 547–550, December 2005. View at Scopus
  62. H.-T. Lue, T.-H. Hsu, S. C. Lai et al., “Scaling evaluation of BE-SONOS NAND flash beyond 20 nm,” in Proceedings of the Symposium on VLSI Technology Digest of Technical Papers (VLSIT '08), pp. 116–117, Honolulu, Hawaii, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. S.-Y. Wang, H.-T. Lue, T.-H. Hsu et al., “A high-endurance (>100K) BE-SONOS NAND flash with a robust nitrided tunnel oxide/si interface,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 951–955, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Molas, M. Bocquet, E. Vianello et al., “Reliability of charge trapping memories with high-k control dielectrics (Invited Paper),” Microelectronic Engineering, vol. 86, no. 7–9, pp. 1796–1803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Larcher and A. Padovani, “High-κ related reliability issues in advanced non-volatile memories,” Microelectronics Reliability, vol. 50, no. 9–11, pp. 1251–1258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Lai, “Non-Volatile memory technologies: the quest for ever lower cost,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '08), pp. 1–6, San Francisco, Calif, USA, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson, and M. L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films,” IBM Journal of Research and Development, vol. 43, no. 3, pp. 265–286, 1999. View at Scopus
  68. J. Kim, J. D. Choi, W. C. Shin et al., “Scaling down of tunnel oxynitride in NAND flash memory: oxynitride selection and reliabilities,” in Proceedings of the 35th Annual IEEE International Reliability Physics Symposium, pp. 12–16, April 1997. View at Scopus
  69. J.-G. Jee, W. Kwon, W. Lee et al., “Development and optimization of re-oxidized tunnel oxide with nitrogen incorporation for the flash memory applications,” in Proceedings of the 45th Annual IEEE International Reliability Physics Symposium (IRPS '07), pp. 184–189, Phoenix, Ariz, USA, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. U. Ganguly, T. Guarini, D. Wellekens et al., “Impact of top-surface tunnel-oxide nitridation on flash memory performance and reliability,” IEEE Electron Device Letters, vol. 31, no. 2, pp. 123–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. S.-Y. Wang, H.-T. Lue, T.-H. Hsu et al., “A high-endurance (>100K) BE-SONOS NAND flash with a robust nitrided tunnel oxide/si interface,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 951–955, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Alessandri, C. Clementi, B. Crivelli et al., “Nitridation impact on thin oxide charge trapping,” Microelectronic Engineering, vol. 36, no. 1–4, pp. 211–214, 1997. View at Scopus
  73. M. Bhat, L. K. Han, D. Wristers, J. Yan, D. L. Kwong, and J. Fulford, “Effects of chemical composition on the electrical properties of NO-nitrided SiO2,” Applied Physics Letters, vol. 66, no. 10, pp. 1225–1227, 1995. View at Scopus
  74. J. De Blauwe, D. Wellekens, J. Van Houdt et al., “Impact of tunnel-oxide nitridation on endurance and read-disturb characteristics of flash E2PROM devices,” Microelectronic Engineering, vol. 36, no. 1–4, pp. 301–304, 1997. View at Scopus
  75. H. Fukuda, M. Yasuda, T. Iwabuchi, and S. Ohno, “Novel N2O-oxynitridation technology for forming highly reliable EEPROM tunnel oxide films,” Electron Device Letters, vol. 12, no. 11, pp. 587–589, 1991. View at Scopus
  76. G. Ghidini, “Charge-related phenomena and reliability of non-volatile memories,” Microelectronics Reliability, vol. 52, no. 9-10, pp. 1876–1882, 2012.
  77. T. Kim, K. Sarpatwari, S. Koka, and H. Wang, “Comprehensive understanding on the role of tunnel oxide top nitridation for the reliability of nanoscale flash memory,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 396–398, 2013.
  78. T. Guarini, M. Bevan, M. Ripley et al., “Nitric oxide rapid thermal nitridation for flash memory applications,” in Proceedings of the 18th International Conference on Advanced Thermal Processing of Semiconductors (RTP '10), pp. 166–170, Gainesville, Fla, USA, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Kim, D. He, K. Morinville et al., “Tunnel oxide nitridation effect on the evolution of Vt instabilities (RTS/QED) and defect characterization for sub-40-nm flash memory,” IEEE Electron Device Letters, vol. 32, no. 8, pp. 999–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. W. H. Lee, C.-H. Hur, H.-M. Lee et al., “Post-cycling data retention failure in multilevel NOR flash memory with nitrided tunnel-oxide,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '09), pp. 907–908, Montreal, Canada, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. E. V. Jelenković, M. Kovačević, S. Jha, K. Y. Tong, and D. Nikezić, “Defect generation in non-nitrided and nitrided sputtered gate oxides under post-irradiation Fowler-Nordheim constant current stress,” Microelectronic Engineering, vol. 104, pp. 90–94, 2013.
  82. T. Kim, S. Koka, S. Surthi, and K. Zhuang, “Direct impact of chemical bonding of oxynitride on boron penetration and electrical oxide hardening for nanoscale flash memory,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 405–407, 2013.
  83. J.-D. Lee, J.-H. Choi, D. Park, and K. Kim, “Effects of Interface Trap Generation and Annihilation on the Data Retention Characteristics of Flash Memory Cells,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 1, pp. 110–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. Y.-H. Shih, S. C. Lee, H. T. Lue et al., “Highly reliable 2-bit/cell nitride trapping flash memory using a novel array-nitride-sealing (ANS) ONO process,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '05), pp. 551–554, Washington, DC, USA, December 2005. View at Scopus
  85. N. Mielke, H. Belgal, I. Kalastirsky et al., “Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 335–343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. C. M. Compagnoni, C. Miccoli, R. Mottadelli et al., “Investigation of the threshold voltage instability after distributed cycling in nanoscale NAND flash memory arrays,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 604–610, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. W. J. Tsai, S. H. Gu, N. K. Zous et al., “Cause of data retention loss in a nitride-based localized trapping storage flash memory cell,” in Proceedings of the 40th annual IEEE International Relaibility Physics Symposium Proceedings, pp. 34–38, April 2002. View at Scopus
  88. E. Lusky, Y. Shacham-Diamand, A. Shappir, I. Bloom, G. Cohen, and B. Eitan, “Retention loss characteristics of localized charge-trapping devices,” in Proceedings of the 42nd Annual IEEE International Reliability Physics Symposium Proceedings, pp. 527–530, April 2004. View at Scopus
  89. A. Furnémont, M. Rosmeulen, K. van der Zanden, J. Van Houdt, K. De Meyer, and H. Maes, “Root cause of charge loss in a nitride-based localized trapping memory cell,” IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1351–1359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Janai, B. Eitan, A. Shappir, E. Lusky, and G. Cohen, “Data retention reliability model of NROM nonvolatile memory products,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 404–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Janai and M. C. Lee, “Threshold voltage fluctuations in localized charge-trapping nonvolatile memory devices,” IEEE Transactions on Electron Devices, vol. 59, no. 3, pp. 596–601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Gerardin and A. Paccagnella, “Present and future non-volatile memories for space,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3016–3039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Gerardin, M. Bagatin, A. Paccagnella et al., “Scaling trends of neutron effects in MLC NAND Flash memories,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 400–406, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Ghetti, C. Monzio Compagnoni, F. Biancardi et al., “Scaling trends for random telegraph noise in deca-nanometer flash memories,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '08), pp. 1–4, San Francisco, Calif, USA, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. H. Gu, C. W. Li, T. Wang et al., “Read current instability arising from random telegraph noise in localized storage, multi-level SONOS flash memory,” in Proceedings of the International Electron Devices Meeting (IEDM '06), pp. 1–4, San Francisco, Calif, USA, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Janai and I. Bloom, “Charge Gain, NBTI, and random telegraph noise in EEPROM flash memory devices,” IEEE Electron Device Letters, vol. 31, no. 9, pp. 1038–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Shainsky, I. Bloom, Y. Shacham, and B. Eitan, “Read disturb in NROM charge trapping non-volatile memory device,” in Proceedings of the 66th DRC Device Research Conference Digest (DRC '08), pp. 277–278, Santa Barbara, Calif, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. W. Chang, G. W. Wu, P. C. Chen et al., “A new interference phenomenon in sub-60nm nitride-based flash memory,” in Proceedings of the 22nd IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW '07), pp. 81–82, Monterey, Calif, USA, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. Y.-W. Chang, T.-C. Lu, S. Pan, and C.-Y. Lu, “Modeling for the 2nd-bit effect of a nitride-based trapping storage flash EEPROM cell under two-bit operation,” IEEE Electron Device Letters, vol. 25, no. 2, pp. 95–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interference on NAND flash memory cell operation,” IEEE Electron Device Letters, vol. 23, no. 5, pp. 264–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. S. Kim, D. J. Lee, C. K. Lee et al., “New scaling limitation of the floating gate cell in NAND Flash Memory,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 599–603, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Joe, M. Jeong, B. Jo, K. Han, S. Park, and J. Lee, “The effect of adjacent bit-line cell interference on random telegraph noise in NAND flash memory cell strings,” IEEE Transactions on Electron Devices, vol. 59, no. 12, pp. 3568–3573, 2012.
  103. D. Ielmini, “Reliability issues and modeling of Flash and post-Flash memory (Invited Paper),” Microelectronic Engineering, vol. 86, no. 7–9, pp. 1870–1875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Modelli, F. Gilardoni, D. Ielmini, and A. S. Spinelli, “A new conduction mechanism for the anomalous cells in thin oxide flash EEPROMs,” in Proceedings of the 39th Annual International Reliability Physics Symposium, pp. 61–66, May 2001. View at Scopus
  105. D. Ielmini, A. S. Spinelli, and A. L. Lacaita, “Recent developments on Flash memory reliability,” Microelectronic Engineering, vol. 80, pp. 321–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. C.-Y. Lu, K.-Y. Hsieh, and R. Liu, “Future challenges of flash memory technologies,” Microelectronic Engineering, vol. 86, no. 3, pp. 283–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Degraeve, F. Schuler, B. Kaczer et al., “Analytical percolation model for predicting anomalous charge loss in flash memories,” IEEE Transactions on Electron Devices, vol. 51, no. 9, pp. 1392–1400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Zambelli, A. Chimenton, and P. Olivo, “Analysis of edge wordline disturb in multimegabit charge trapping flash NAND arrays,” in Proceedings of the 49th International Reliability Physics Symposium (IRPS '11), pp. MY.4.1–MY.4.5, Monterey, Calif, USA, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Spessot, A. Calderoni, P. Fantini et al., “Variability effects on the VT distribution of nanoscale NAND flash memories,” in Proceedings of the IEEE International Reliability Physics Symposium (IRPS '10), pp. 970–974, Anaheim, Calif, USA, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, “Size-Dependent Retention Time in NiO-Based Resistive-Switching Memories,” IEEE Electron Device Letters, vol. 31, no. 4, pp. 353–355, 2010.