About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 240563, 7 pages
http://dx.doi.org/10.1155/2013/240563
Research Article

Hydrogenic-Donor Impurity Binding Energy Dependence of the Electric Field in GaAs/AlxGa1−xAs Quantum Rings

1College of Science, Hebei United University, Tangshan 063000, China
2College of Light Industry, Hebei United University, Tangshan 063000, China

Received 11 June 2013; Revised 2 July 2013; Accepted 2 July 2013

Academic Editor: Yogendra Mishra

Copyright © 2013 Guangxin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. K. Mishra, V. S. K. Chakravadhanula, V. Hrkac, et al., “Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability,” Journal of Applied Physics, vol. 112, no. 6, Article ID 064308, 2012.
  2. O. Lupan, T. Pauporté, B. Viana, et al., “UV-blue and green electroluminescence from Cu-doped ZnO nanorod emitters hydrothermally synthesized on p-GaN,” Journal of Nanoelectronics and Optoelectronics, vol. 7, no. 7, pp. 712–718, 2012.
  3. D. Gedamu, I. Paulowicz, S. Jebril, Y. Kumar Mishra, and R. Adelung, “Procedures and properties for a direct nano-micro integration of metal and semiconductor nanowires on Si chips,” Journal of Nanotechnology, vol. 2012, Article ID 325732, 13 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Gong, Z. C. Niu, S. S. Huang, Z. D. Fang, B. Q. Sun, and J. B. Xia, “Formation of GaAs/AlGaAs and InGaAs/GaAs nanorings by droplet molecular-beam epitaxy,” Applied Physics Letters, vol. 87, no. 9, Article ID 093116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. DeJarld, K. Reyes, P. Smereka, and J. M. Millunchick, “Mechanisms of ring and island formation in lattice mismatched droplet epitaxy,” Applied Physics Letters, vol. 102, no. 13, Article ID 133107, 2013.
  6. M. Abbarchi, L. Cavigli, C. Somaschini et al., “Micro-photoluminescence of GaAs/AlgaAs triple concentric quantum rings,” Nanoscale Research Letters, vol. 6, article 569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-S. Li and J.-B. Xia, “Electronic states of InAs/GaAs quantum ring,” Journal of Applied Physics, vol. 89, no. 6, pp. 3434–3437, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S.-S. Li and J.-B. Xia, “Electronic structures of GaAs/AlxGa1−xAs quantum double rings,” Nanoscale Research Letters, vol. 1, no. 2, pp. 167–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Barticevic, M. Pacheco, and A. Latgé, “Quantum rings under magnetic fields: electronic and optical properties,” Physical Review B, vol. 62, no. 11, pp. 6963–6966, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Farias, M. H. Degani, J. A. K. Freire, J. Costa E Silva, and R. Ferreira, “Impurities and geometrical effects on the electron energy spectrum of quantum rings,” Physical Review B, vol. 77, no. 8, Article ID 085316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. A. Harutyunyan, “Semiconductor nanocylindrical heterolayer in a radial electrostatic field: the electronic spectrum and optical properties,” Applied Surface Science, vol. 256, no. 2, pp. 455–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. V. A. Harutyunyan, “Semiconductor nanotube in strong electrostatic field,” Journal of Applied Physics, vol. 109, no. 1, Article ID 014325, 2011.
  13. W. Xie, “Absorption spectra of a donor impurity in a quantum ring,” Physica Status Solidi (B) Basic Research, vol. 246, no. 6, pp. 1313–1317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. S. Monozon and P. Schmelcher, “Impurity center in a semiconductor quantum ring in the presence of crossed magnetic and electric fields,” Physical Review B, vol. 67, no. 4, Article ID 045203, 2003. View at Scopus
  15. B. S. Monozon, M. V. Ivanov, and P. Schmelcher, “Impurity center in a semiconductor quantum ring in the presence of a radial electric field,” Physical Review B, vol. 70, no. 20, Article ID 205336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Bruno-Alfonso and A. Latgé, “Semiconductor quantum rings: shallow-donor levels,” Physical Review B, vol. 61, no. 23, pp. 15887–15894, 2000. View at Scopus
  17. M. Aichinger, S. A. Chin, E. Krotscheck, and E. Räsänen, “Effects of geometry and impurities on quantum rings in magnetic fields,” Physical Review B, vol. 73, no. 19, Article ID 195310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. G. Barseghyan, M. E. Mora-Ramos, and C. A. Duque, “Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring,” European Physical Journal B, vol. 84, no. 2, pp. 265–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Barseghyan, A. Hakimyfard, A. A. Kirakosyan, M. E. Mora-Ramos, and C. A. Duque, “Hydrostatic pressure and electric and magnetic field effects on the binding energy of a hydrogenic donor impurity in InAs Pöschl-Teller quantum ring,” Superlattices and Microstructures, vol. 51, no. 1, pp. 119–127, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. H. M. Baghramyan, M. G. Barseghyan, C. A. Duque, and A. A. Kirakosyan, “Binding energy of hydrogenic donor impurity in GaAs/Ga1−xAlxAs concentric double quantum rings: effects of geometry, hydrostatic pressure, temperature, and aluminum concentration,” Physica E, vol. 48, no. 1, pp. 164–170, 2013.
  21. A. Zounoubi, I. Zorkani, K. El Messaoudi, and A. Jorio, “Magnetic field effect on the polarizability of shallow donor in cylindrical quantum dot,” Physics Letters A, vol. 312, no. 3-4, pp. 220–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. X. Wang and P. Zhang, “Hydrogenic impurity binding energy in self-assembled GaAs/Ga1−xAlxAs quantum rings,” Journal of Applied Physics, vol. 103, no. 6, Article ID 063713, 2008.
  23. D. M. Zheng, Z. C. Wang, and B. Q. Xiao, “Effects of hydrostatic pressure on ionized donor bound exciton states in strained wurtzite GaN/AlxGa1−xN cylindrical quantum dots,” Physica B, vol. 407, no. 1, pp. 4160–4167, 2012.
  24. J. Lapez-Gondar, J. Dalbuquerque E Castro, and L. E. Oliveira, “Electric-field effects on shallow impurity states in GaAs-(Ga,Al)As quantum wells,” Physical Review B, vol. 42, no. 11, pp. 7069–7077, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-H. Pan, L.-Z. Liu, and M. Liu, “Hydrogenic-donor impurity states in GaAs/AlxGa1−xAs quantum dots in the presence of an electric field,” Chinese Physics Letters, vol. 28, no. 8, Article ID 086201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. M. Duque, A. L. Morales, M. E. MoraRamos, and C. A. Duque, “Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings,” Journal of Luminescence, vol. 143, no. 1, pp. 81–88, 2011.
  27. H. Wang, L. Jiang, Q. Gong, and S. Feng, “External electric field effect on the hydrogenic donor impurity in zinc-blende InGaN/GaN cylindrical quantum well wire,” Physica B, vol. 405, no. 18, pp. 3818–3821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. X. Wang, X. Z. Duan, and L. Y. Ai, “Hydrogenic donor impurity states of quantum ring in the presence of an electric field,” in Proceedings of the IEEE Symposium on Electrical & Electronics Engineering (EEESYM '12), vol. 1, pp. 738–741, 2012.