About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 247045, 8 pages
http://dx.doi.org/10.1155/2013/247045
Research Article

Dependence of Plasmonic Properties of Silver Island Films on Nanoparticle Size and Substrate Coverage

1Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
2Hind High Vacuum Company Private Limited, No. 17, Phase 1, Peenya Industrial Area, Bangalore 560058, India

Received 10 May 2013; Revised 6 August 2013; Accepted 7 August 2013

Academic Editor: Chunyi Zhi

Copyright © 2013 M. G. Sreenivasan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials, vol. 9, no. 3, pp. 205–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Polman and H. A. Atwater, “Photonic design principles for ultrahigh-efficiency photovoltaics,” Nature Materials, vol. 11, no. 3, pp. 174–177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Solar Energy Materials and Solar Cells, vol. 37, no. 3-4, pp. 337–348, 1995. View at Scopus
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Applied Physics Letters, vol. 69, no. 16, pp. 2327–2329, 1996. View at Scopus
  5. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Applied Physics Letters, vol. 73, no. 26, pp. 3815–3817, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Applied Physics Letters, vol. 86, no. 6, Article ID 063106, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Applied Physics Letters, vol. 89, no. 9, Article ID 093103, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol. 101, no. 9, Article ID 093105, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Applied Physics Letters, vol. 93, no. 19, Article ID 191113, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Applied Physics Letters, vol. 92, no. 1, Article ID 013113, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Applied Physics Letters, vol. 93, no. 7, Article ID 073307, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Applied Physics Letters, vol. 93, no. 12, Article ID 121904, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Varlamov, Z. Ouyang, X. Zhao, and D. S. Jung, “Surface plasmon enhanced light-trapping in polycrystalline silicon thin-film solar,” in Proceedings of the Photonics Global Conference (PGC '10), pp. 1–6, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Najjar, E. Quesnel, N. Baclet et al., “Improvement of energy conversion efficiency of amorphous silicon thin-film solar cells through plasmon effect,” in Proceedings of the MIDEM 2009 Conference, pp. 281–286, 2009.
  15. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Progress in Photovoltaics, vol. 19, no. 3, pp. 260–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films, vol. 516, no. 20, pp. 6813–6817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Chen, B. Jia, J. K. Saha et al., “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Letters, vol. 12, no. 5, pp. 2187–2192, 2012. View at Publisher · View at Google Scholar
  18. ImageJ, http://rsbweb.nih.gov/ij/.
  19. J. P. Clarkson, Plasmon enhanced absorption in photovoltaic cells [Ph.D. thesis], University of Rochester, 2010.
  20. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Physical Review B, vol. 65, no. 19, Article ID 193408, 4 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, no. 8, pp. 1087–1090, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Letters, vol. 7, no. 7, pp. 2080–2088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Letters, vol. 5, no. 3, pp. 515–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express, vol. 16, no. 26, pp. 21793–21800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Optics Express, vol. 17, no. 12, pp. 10195–10205, 2009. View at Publisher · View at Google Scholar · View at Scopus