About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 252965, 6 pages
http://dx.doi.org/10.1155/2013/252965
Research Article

Low-Temperature Annealing Induced Amorphization in Nanocrystalline NiW Alloy Films

1State-Key Laboratory for Mechanical Behavior of Material, Xi’an Jiaotong University, Xi’an 710049, China
2State-Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China

Received 23 May 2013; Accepted 20 July 2013

Academic Editor: Fathallah Karimzadeh

Copyright © 2013 Z. Q. Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia, vol. 48, no. 1, pp. 279–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Pekarskaya, J. F. Löffler, and W. L. Johnson, “Microstructural studies of crystallization of a Zr-based bulk metallic glass,” Acta Materialia, vol. 51, no. 14, pp. 4045–4057, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Martin, T. Ohkubo, M. Ohnuma, B. Deconihout, and K. Hono, “Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass,” Acta Materialia, vol. 52, no. 15, pp. 4427–4435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Chu, C. T. Liu, T. Mahalingam et al., “Annealing-induced full amorphization in a multicomponent metallic film,” Physical Review B, vol. 69, no. 11, Article ID 113410, 4 pages, 2004. View at Scopus
  5. J. P. Chu, “Annealing-induced amorphization in a glass-forming thin film,” JOM, vol. 61, no. 1, pp. 72–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Chu, C.-T. Lo, Y.-K. Fang, and B.-S. Han, “On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: a magnetic and property study,” Applied Physics Letters, vol. 88, no. 1, Article ID 012510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Chu, C.-Y. Wang, L. J. Chen, and Q. Chen, “Annealing-induced amorphization in a sputtered glass-forming film: in-situ transmission electron microscopy observation,” Surface and Coatings Technology, vol. 205, no. 8-9, pp. 2914–2918, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. X. McFadden, R. S. Mishra, R. Z. Vallev, A. P. Zhilyaev, and A. K. Mukherjee, “Low-temperature superplasticity in nanostructured nickel and metal alloys,” Nature, vol. 398, no. 6729, pp. 684–686, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. G. K. Rane, U. Welzel, and E. J. Mittemeijer, “Grain growth studies on nanocrystalline Ni powder,” Acta Materialia, vol. 60, no. 20, pp. 7011–7023, 2012.
  10. G. Sharma, J. Varshney, A. C. Bidaye, and J. K. Chakravartty, “Grain growth characteristics and its effect on deformation behavior in nanocrystalline Ni,” Materials Science and Engineering A, vol. 539, pp. 324–329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Kacher, I. M. Robertson, M. Nowell, J. Knapp, and K. Hattar, “Study of rapid grain boundary migration in a nanocrystalline Ni thin film,” Materials Science and Engineering A, vol. 528, no. 3, pp. 1628–1635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Haslam, D. Moldovan, S. R. Phillpot, D. Wolf, and H. Gleiter, “Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films,” Computational Materials Science, vol. 23, no. 1-4, pp. 15–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Hibbard, K. T. Aust, and U. Erb, “On interfacial velocities during abnormal grain growth at ultra-high driving forces,” Journal of Materials Science, vol. 43, no. 19, pp. 6441–6452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, J. De Baerdemaeker, and C. Dauwe, “Room-temperature grain growth in sputter-deposited Cu films,” Applied Physics Letters, vol. 82, no. 12, pp. 1863–1865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, and R. Birringer, “Unraveling the nature of room temperature grain growth in nanocrystalline materials,” Acta Materialia, vol. 56, no. 16, pp. 4255–4266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Weertman, “Retaining the nano in nanocrystalline alloys,” Science, vol. 337, no. 6097, pp. 921–922, 2012. View at Publisher · View at Google Scholar
  17. T. Chookajorn, H. A. Murdoch, and C. A. Schuh, “Design of stable nanocrystalline alloys,” vol. Science337, no. 6097, pp. 951–954, 2012.
  18. A. J. Detor and C. A. Schuh, “Microstructural evolution during the heat treatment of nanocrystalline alloys,” Journal of Materials Research, vol. 22, no. 11, pp. 3233–3248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. J. Detor and C. A. Schuh, “Tailoring and patterning the grain size of nanocrystalline alloys,” Acta Materialia, vol. 55, no. 1, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Detor, M. K. Miller, and C. A. Schuh, “Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography,” Philosophical Magazine, vol. 86, no. 28, pp. 4459–4475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Li, F. Jiang, S. Ni et al., “Mechanical behaviors of as-deposited and annealed nanostructured Ni–Fe alloys,” Scripta Materialia, vol. 65, no. 1, pp. 1–4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Ebrahimi and H. Li, “The effect of annealing on deformation and fracture of a nanocrystalline fcc metal,” Journal of Materials Science, vol. 42, no. 5, pp. 1444–1454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. J. Rupert, J. R. Trelewicz, and C. A. Schuh, “Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys,” Journal of Materials Research, vol. 27, no. 9, pp. 1285–1294, 2012.
  24. P. Schloßmacher and T. Yamasaki, “Structural analysis of electroplated amorphous-nanocrystalline Ni–W,” Mikrochimica Acta, vol. 132, no. 2-4, pp. 309–313, 2000. View at Scopus
  25. X. L. Yeh, K. Samwer, and W. L. Johnson, “Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds—a new method of synthesizing metallic glasses,” Applied Physics Letters, vol. 42, no. 3, pp. 242–243, 1983. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Sieber, G. Wilde, and J. H. Perepezko, “Thermally activated amorphous phase formation in cold-rolled multilayers of Al–Ni, Al–Ta, Al–Fe and Zr–Cu,” Journal of Non-Crystalline Solids, vol. 250-252, pp. 611–615, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Gabriel, H. L. Lukas, C. H. Allibert, and I. Ansara, “Experimental and calculated phase diagrams of the Ni–W, Co–W and Co–Ni–W system,” Zeitschrift für Metallkunde, vol. 76, no. 9, pp. 589–595, 1985. View at Scopus
  28. T. J. Rupert, J. C. Trenkle, and C. A. Schuh, “Enhanced solid solution effects on the strength of nanocrystalline alloys,” Acta Materialia, vol. 59, no. 4, pp. 1619–1631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. O. Aning, Z. Wang, and T. H. Courtney, “Tungsten solution kinetics and amorphization of nickel in mechanically alloyed NiW alloys,” Acta Metallurgica Et Materialia, vol. 41, no. 1, pp. 165–174, 1993. View at Scopus
  30. A. J. Detor and C. A. Schuh, “Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system,” Acta Materialia, vol. 55, no. 12, pp. 4221–4232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Gleiter, “Nanocrystalline solids,” Journal of Applied Crystallography, vol. 24, no. 2, pp. 79–90, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Jing, A. Krämer, R. Birringer, H. Gleiter, and U. Gonser, “Modified atomic structure in a PdFeSi nanoglass. A Mössbauer study,” Journal of Non-Crystalline Solids, vol. 113, no. 2-3, pp. 167–170, 1989. View at Scopus
  33. H. Gleiter, “Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today?” Acta Materialia, vol. 56, no. 19, pp. 5875–5893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Şopu, K. Albe, Y. Ritter, and H. Gleiter, “From nanoglasses to bulk massive glasses,” Applied Physics Letters, vol. 94, no. 19, Article ID 191911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. T.-H. Yang, R.-T. Huang, C.-A. Wu et al., “Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy,” Applied Physics Letters, vol. 95, no. 24, Article ID 241905, 2009. View at Publisher · View at Google Scholar · View at Scopus