About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 272598, 8 pages
http://dx.doi.org/10.1155/2013/272598
Research Article

Microwave Mediated Organic Reaction: A Convenient Approach for Rapid and Efficient Synthesis of Biologically Active Substituted 1,3-Dihydro-2H-indol-2-one Derivatives

1Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha 760010, India
2University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (CAS), Panjab University, Chandigarh 160014, India

Received 17 May 2013; Revised 8 June 2013; Accepted 13 June 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 Jnyanaranjan Panda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Somani, R. Dandekar, P. Shirodkar, P. Gide, P. Tanushree, and V. Kadam, “Optimization of microwave assisted synthesis of some Schiff's bases,” International Journal of ChemTech Research, vol. 2, no. 1, pp. 172–179, 2010. View at Scopus
  2. R. S. Varma, “Microwaves in green and sustainable chemistry,” in Microwave Methods in Organic Synthesis, vol. 266 of Topics in Current Chemistry, pp. 199–231, 2006.
  3. A. Laporterie, J. Marqui, and J. Dubac, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2002.
  4. S. K. Dewan, “Microwave effect in organic reactions,” Indian Journal of Chemistry B, vol. 45, no. 10, pp. 2337–2340, 2006. View at Scopus
  5. C. O. Kappe, “Controlled microwave heating in modern organic synthesis,” Angewandte Chemie, vol. 43, no. 46, pp. 6250–6284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. M. da Silva, S. J. Garden, and A. C. Pinto, “The chemistry of isatins: a review from 1975 to 1999,” Journal of the Brazilian Chemical Society, vol. 12, no. 3, pp. 273–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Glover, S. K. Bhattacharya, and A. Chakrabarti, “The pharmacology of isatin: a brief review,” Stress Medicine, vol. 14, pp. 225–229, 1998.
  8. A. E. Medvedev, A. Clow, M. Sandler, and V. Glover, “Isatin: a link between natriuretic peptides and monoamines?” Biochemical Pharmacology, vol. 52, no. 3, pp. 385–391, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Medvedev and V. Glover, “Tribulin and endogenous MAO-inhibitory regulation in vivo,” NeuroToxicology, vol. 25, no. 1-2, pp. 185–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Medvedev, N. Igosheva, M. Crumeyrolle-Arias, and V. Glover, “Isatin: role in stress and anxiety,” Stress, vol. 8, no. 3, pp. 175–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ramesh, S. K. Sridhar, and M. Saravanan, “Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives,” European Journal of Medicinal Chemistry, vol. 36, no. 7-8, pp. 615–625, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Sriram, T. R. Bal, and P. Yogeeswari, “Synthesis, antiviral and antibacterial activities of isatin Mannich bases,” Medicinal Chemistry Research, vol. 14, no. 4, pp. 211–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. N. Pandeya, D. Sriram, G. Nath, and E. de Clercq, “Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine,” Farmaco, vol. 54, no. 9, pp. 624–628, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Jarrahpour, D. Khalili, E. de Clercq, C. Salmi, and J. M. Brunel, “Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives,” Molecules, vol. 12, no. 8, pp. 1720–1730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Panda, V. J. Patro, B. M. Sahoo, and J. Mishra, “Green chemistry approach for efficient synthesis of Schiff bases of isatin derivatives and evaluation of their antibacterial activities,” Journal of Nanoparticles, vol. 2013, Article ID 549502, 5 pages, 2013. View at Publisher · View at Google Scholar
  16. A. Patel, S. Bari, G. Telele, J. Patel, and M. Sarangapani, “Synthesis and antimicrobial activity of some new isatin derivatives,” Iranian Journal of Pharmaceutical Research, vol. 5, no. 4, pp. 249–254, 2006.
  17. A. Jarrahpour, D. Khalili, E. de Clercq, C. Salmi, and J. M. Brunel, “Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives,” Molecules, vol. 12, no. 8, pp. 1720–1730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Singh, S. K. Shukla, and L. P. Awasthi, “Synthesis of some 3-(4-nitrobenzoyl-hydrzone)-2-indolinones as potential antiviral agents,” Current Science, vol. 52, pp. 766–769, 1983.
  19. P. Selvam, N. Murgesh, M. Chandramohan et al., “In vitro antiviral activity of some novel isatin derivatives against HCV and SARS-CoV viruses,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 1, pp. 91–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. R. Bal, B. Anand, P. Yogeeswari, and D. Sriram, “Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 20, pp. 4451–4455, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Sriram, T. R. Bal, and P. Yogeeswari, “Aminopyimidinimo isatin analogues: design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broadspectrum chemotherapeutic properties,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, pp. 565–577, 2005. View at Scopus
  22. S. N. Pandeya, S. Smith, and J. P. Stable, “Anticonvulsant and sedative-hypnotic activities of N-substituted isatin-3-semicarbazones,” Archiv der Pharmazie, vol. 335, no. 4, pp. 129–134, 2002.
  23. M. Verma, S. N. Pandeya, K. N. Singh, and J. P. Stables, “Anticonvulsant activity of Schiff bases of isatin derivatives,” Acta Pharmaceutica, vol. 54, no. 1, pp. 49–56, 2004. View at Scopus
  24. T. Aboul-Fadl and F. A. S. Bin-Jubair, “Anti-tubercular activity of isatin derivatives,” International Journal of Research in Pharmaceutical Sciences, vol. 1, no. 2, pp. 113–126, 2010. View at Scopus
  25. M. A. Hussein, T. Aboul-Fadl, and A. Hussein, “Synthesis and antitubercular activity of Mannich bases derived from isatin, isonicotinic acd hydrazone,” Bulletin of Pharmaceutical Sciences, vol. 28, part 1, pp. 131–136, 2005.
  26. K. L. Vine, J. M. Locke, M. Ranson, et al., “In vitro cytotoxicity evaluation of some substituted isatin derivatives,” Bioorganic and Medicinal Chemistry, vol. 15, pp. 931–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Yogeeswari, D. Sriram, R. Kavya, and S. Tiwari, “Synthesis and in vitro cytotoxicity evaluation of Gatifloxacin Mannich bases,” Biomedicine & Pharmacotherapy, vol. 59, no. 9, pp. 501–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Panda, V. J. Patro, C. S. Panda, B. M. Sahoo, and N. K. Mishra, “Synthesis and screening for antibacterial, analgesic and anti-inflammatory activity of Mannich bases derived from 1H-indole-2,3-dione,” Journal of the Indian Chemical Society, vol. 89, pp. 913–918, 2012.
  29. S. A. Khan, S. W. Haque, M. Imran, and N. Siddiqui, “Synthesis and biological evaluation of some novel Mannich bases of isatin,” Journal of Pharmacy Research, vol. 5, no. 2, pp. 61–64, 2006.
  30. T. J. Singh and P. K. Gujral, “Neuropharmacological actions of Indoline-2,3-dione,” Indian Journal of Pharmacology, vol. 3, no. 4, pp. 187–191, 1971.
  31. H. K. Dhamija, D. Gupta, B. Parashar, S. Kumar, and Shashipal, “In vitro anthelmintic activity on aqueous and ethanol extracts of Mimusops elengi linn. Bark,” Pharmacologyonline, vol. 3, pp. 740–746, 2011.
  32. R. Blakemore, “Diversity of exotic earthworms in Australia—a status report,” Transactions of the Royal Zoological Society of New South Wales, 1999.
  33. T. Rastogi, V. Bhutda, K. Moon, P. B. Aswar, and S. S. Khadabadi, “Comparative studies on anthelmintic activity of Moringa Oleifera and Vitex Negundo,” Asian Journal of Research in Chemistry, vol. 2, no. 2, pp. 181–182, 2009.