About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 297564, 9 pages
http://dx.doi.org/10.1155/2013/297564
Research Article

Self-Assembly, Interfacial Nanostructure, and Supramolecular Chirality of the Langmuir-Blodgett Films of Some Schiff Base Derivatives without Alkyl Chain

1Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

Received 14 March 2013; Accepted 23 March 2013

Academic Editor: Xingbin Yan

Copyright © 2013 Tifeng Jiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Tieke, “Coordinative supramolecular assembly of electrochromic thin films,” Current Opinion in Colloid & Interface Science, vol. 16, no. 6, pp. 499–507, 2011. View at Publisher · View at Google Scholar
  2. M. Schulz, M. Karnahl, M. Schwalbe, and J. G. Vos, “The role of the bridging ligand in photocatalytic supramolecular assemblies for the reduction of protons and carbon dioxide,” Coordination Chemistry Reviews, vol. 256, no. 15-16, pp. 1682–1705, 2012. View at Publisher · View at Google Scholar
  3. C. P. Myers and M. E. Williams, “Directed self-assembly of inorganic redox complexes with artificial peptide scaffolds,” Coordination Chemistry Reviews, vol. 254, no. 19-20, pp. 2416–2428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Zabierowski, J. Szklarzewicz, K. Kurpiewska, K. Lewiński, and W. Nitek, “Assemblies of substituted salicylidene-2-ethanolamine copper(II) complexes: from square planar monomeric to octahedral polymeric halogen analogues,” Polyhedron, vol. 49, no. 1, pp. 74–83, 2013. View at Publisher · View at Google Scholar
  5. P. P. Chakrabarty, D. Biswas, S. García-Granda, A. D. Jana, and S. Saha, “Sodium ion assisted molecular self-assembly in a class of Schiff-base copper(II) complexes,” Polyhedron, vol. 35, no. 1, pp. 108–115, 2012. View at Publisher · View at Google Scholar
  6. J. V. D. Gucht, E. Spruijt, M. Lemmers, and M. A. Cohen Stuart, “Polyelectrolyte complexes: bulk phases and colloidal systems,” Journal of Colloid and Interface Science, vol. 361, no. 2, pp. 407–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Reuter, E. Amado, K. Busse et al., “Formation of 2D spherulites in Langmuir films of amphiphilic T-shaped liquid crystals,” Journal of Colloid and Interface Science, vol. 372, no. 1, pp. 192–201, 2012. View at Publisher · View at Google Scholar
  8. N. C. M. Zanon, O. N. Oliveira Jr, and L. Caseli, “Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor,” Journal of Colloid and Interface Science, vol. 373, no. 1, pp. 69–74, 2012. View at Publisher · View at Google Scholar
  9. K. Wohnrath, C. J. L. Constantino, P. A. Antunes et al., “Molecularly organized Langmuir-Blodgett films from a ruthenium biphosphine complex,” Journal of Physical Chemistry B, vol. 109, no. 11, pp. 4959–4964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Hemakanthi and A. Dhathathreyan, “Synthesis of nickel sulfide using Langmuir-Blodgett films of nickel complex of 2-hydroxy-5-nitro-N-benzylidene hexadecylamine monolayers at air/water interface,” Chemical Physics Letters, vol. 334, no. 4-6, pp. 245–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Aoki, Y. Abe, and T. Miyashita, “Effective photoinduced electron transfer in hetero-deposited redox polymer LB films,” Langmuir, vol. 15, no. 4, pp. 1463–1469, 1999. View at Scopus
  12. S. Zhang, H. L. Wang, M. Chen, and D. J. Qian, “Monolayers and Langmuir-Blodgett films of Fe2+-mediated polyelectrolyte with viologen derivatives as linkers at the air-water interface,” Colloids and Surfaces A, vol. 384, no. 1–3, pp. 561–569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Nagel, U. Oertel, P. Friedel, H. Komber, and D. Mobius, “Langmuir-Blodgett layers from Schiff base copper(II) complexes,” Langmuir, vol. 13, no. 17, pp. 4693–4698, 1997. View at Publisher · View at Google Scholar
  14. S. S. Sundari, A. Dhathathreyan, M. Kanthimathi, and B. U. Nair, “Langmuir-Blodgett films of Schiff base complexes of copper(II),” Langmuir, vol. 13, no. 18, pp. 4923–4925, 1997.
  15. R. Vijayalakshmi, A. Dhathathreyan, M. Kanthimathi, V. Subramanian, B. U. Nair, and T. Ramasami, “Penetration of DNA into mixed monolayers of 1,3-bis(salicylideneamino)propanechromium(III) perchlorate and octadecylamine at an air/water interface,” Langmuir, vol. 15, no. 8, pp. 2898–2900, 1999. View at Publisher · View at Google Scholar
  16. Y. Q. Liang, Z. Q. Zhang, L. X. Wu, Y. C. Tian, and H. D. Chen, “Structure control of synthetic bilayer membranes from single-chain amphiphiles containing the Schiff base segment: II. pH and temperature dependence of the aggregational behaviors,” Journal of Colloid and Interface Science, vol. 178, no. 2, pp. 714–719, 1996. View at Publisher · View at Google Scholar
  17. F. P. Fugisawa, A. P. Ramos, P. C. de Sousa Filho, O. A. Serra, and M. E. D. Zaniquelli, “Formation of thin luminescent Eu3+-LB films by in situ coordination with 2, 3, 5, 6-tetra(2′-pyridyl)pyrazine and 1-octadecanol in pure and mixed Langmuir monolayers,” Journal of Luminescence, vol. 132, no. 5, pp. 1116–1121, 2012. View at Publisher · View at Google Scholar
  18. T. Jiao, C. Cheng, F. Xi, and M. Liu, “Metal ion modulated ultrathin films and nanostructures of tyrosine-based bolaamphiphile at the air/water interface,” Thin Solid Films, vol. 503, no. 1-2, pp. 230–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Q. Liang, L. X. Wu, Y. C. Tian, Z. Q. Zhang, and H. D. Chen, “Structure control of synthetic bilayer membranes from single-chain amphiphiles containing the Schiff base segment: I. Conformation control and spectral characterization,” Journal of Colloid and Interface Science, vol. 178, no. 2, pp. 703–713, 1996.
  20. T. Jiao, X. Li, Q. Zhang et al., “Interfacial assembly of a series of trigonal Schiff base amphiphiles in organized molecular films,” Colloids and Surfaces A, vol. 407, pp. 108–115, 2012. View at Publisher · View at Google Scholar
  21. H. Gong, M. Yin, and M. Liu, “in situ coordination-induced Langmuir film formation of water-soluble 2,5-dimercapto-1,3,4-thiadiazole at the air/water interface and the growth of metal sulfide nanostructures in their templated Langmuir-Schaefer films,” Langmuir, vol. 19, no. 20, pp. 8280–8286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Okamoto, M. Taniguchi, M. Takahashi, and A. Yamagishi, “Studies on energy transfer from chiral polypyridyl Ru(II) to Os(II) complexes in cast and Langmuir-Blodgett films,” Langmuir, vol. 17, no. 1, pp. 195–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Yuan and M. Liu, “Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination,” Journal of the American Chemical Society, vol. 125, no. 17, pp. 5051–5056, 2003. View at Scopus
  24. P. Guo and M. Liu, “Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization,” Langmuir, vol. 21, no. 8, pp. 3410–3412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Popović, V. Roje, G. Pavlović, D. Matković-Čalogović, and G. Giester, “The first example of coexistence of the ketoamino-enolimino forms of diamine Schiff base naphthaldimine parts: the crystal and molecular structure of N,N-bis(1-naphthaldimine)-o-phenylenediamine chloroform (1/1) solvate at 200 K,” Journal of Molecular Structure, vol. 597, no. 1–3, pp. 39–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Jiao and M. Liu, “Phase behaviors and 2D-3D morphological transition of aromatic Schiff base derivatives in organized molecular films,” Acta Physico-Chimica Sinica, vol. 28, no. 6, pp. 1418–1424, 2012.
  27. C. Spitz, S. Dähne, A. Quart, and H. W. Abraham, “Proof of chirality of J-aggregates spontaneously and enantioselectively generated from achiral dyes,” Journal of Physical Chemistry B, vol. 104, no. 36, pp. 8664–8669, 2000. View at Scopus
  28. K. Chichak, U. Jacquemard, and N. R. Branda, “The construction of (salophen)ruthenium(II) assemblies using axial coordination,” European Journal of Inorganic Chemistry, vol. 2002, no. 2, pp. 357–368, 2002.
  29. K. N. Kumar and R. Ramesh, “Synthesis, luminescent, redox and catalytic properties of Ru(II) carbonyl complexes containing 2N2O donors,” Polyhedron, vol. 24, no. 14, pp. 1885–1892, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. J. Musevi, E. Şahin, and A. Aslani, “Synthesis of PbO and PbBr2 nanopowders from nano-sized 2D lead(II) coordination polymers,” Powder Technology, vol. 229, pp. 30–36, 2012. View at Publisher · View at Google Scholar
  31. Y. Zheng, N. Guo, Y. Jia, H. Qiao, and H. You, “From big to small: a general strategy of converting lanthanide coordination polymers to oxide and hydroxide nanoparticles,” Inorganic Chemistry Communications, vol. 20, pp. 225–227, 2012. View at Publisher · View at Google Scholar
  32. I. Weissbuch, S. Guo, R. Edgar et al., “Oriented crystalline thin films of tetracosanedioic acid and its metal salts at the air-aqueous solution interface,” Advanced Materials, vol. 10, no. 2, pp. 117–121, 1998.
  33. I. Weissbuch, P. N. W. Baxter, S. Cohen et al., “Self-assembly at the air-water interface. In-situ preparation of thin films of metal ion grid architectures,” Journal of the American Chemical Society, vol. 120, no. 19, pp. 4850–4860, 1998. View at Publisher · View at Google Scholar
  34. Y. Zhang, R. Jin, L. Zhang, and M. Liu, “Growth of CaCO3 in the templated Langmuir-Blodgett film of a bolaamphiphilic diacid,” New Journal of Chemistry, vol. 28, no. 5, pp. 614–617, 2004. View at Publisher · View at Google Scholar
  35. J. Varshosaz, F. Hassanzadeh, H. Sadeghi, F. Firozian, and M. Mirian, “Effect of molecular weight and molar ratio of dextran on self-assembly of dextran stearate polymeric micelles as nanocarriers for etoposide,” Journal of Nanomaterials, vol. 2012, Article ID 265657, 10 pages, 2012. View at Publisher · View at Google Scholar
  36. Y. Shu, G. Ou, L. Wang, J. Zou, and Q. Li, “Surface modification of titanium with heparin-chitosan multilayers via layer-by-layer self-assembly technique,” Journal of Nanomaterials, vol. 2011, Article ID 423686, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Kong, C. Chen, K. Mai, X. Shi, R. Hu, and Z. Wang, “Large-scale synthesis and selfassembly of monodisperse spherical TiO2 nanocrystals,” Journal of Nanomaterials, vol. 2011, Article ID 526246, 4 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Lu, I. Do, H. Fukushima, I. Lee, and L. T. Drzal, “Stable aqueous suspension and self-assembly of graphite nanoplatelets coated with various polyelectrolytes,” Journal of Nanomaterials, vol. 2010, Article ID 186486, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus