About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 309617, 7 pages
http://dx.doi.org/10.1155/2013/309617
Research Article

Improved Processing of Carbon Nanotube Yarn

1Department of Chemical and Material Science Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
2Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072, USA

Received 22 October 2012; Accepted 10 March 2013

Academic Editor: Qian-Ming Gong

Copyright © 2013 Chaminda Jayasinghe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Ericson, H. Fan, H. Peng et al., “Macroscopic, neat, single-walled carbon nanotube fibers,” Science, vol. 305, no. 5689, pp. 1447–1450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Kozlov, R. C. Capps, W. M. Sampson, H. Von Ebron, J. P. Ferraris, and R. H. Baughman, “Spinning solid and hollow polymer-free carbon nanotube fibers,” Advanced Materials, vol. 17, no. 5, pp. 614–617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Vigolo, A. Penicaud, C. Coulon et al., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, vol. 290, no. 5495, pp. 1331–1334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Zhang, Q. Li, Y. Tu et al., “Strong carbon-nanotube fibers spun from long carbon-nanotube arrays,” Small, vol. 3, no. 2, pp. 244–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Direct synthesis of long single-walled carbon nanotube strands,” Science, vol. 296, no. 5569, pp. 884–886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Motta, A. Moisala, I. A. Kinloch, and A. H. Windle, “High performance fibres from “dog bone” carbon nanotubes,” Advanced Materials, vol. 19, no. 21, pp. 3721–3726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Motta, Y. L. Li, I. Kinloch, and A. Windle, “Mechanical properties of continuously spun fibers of carbon nanotubes,” Nano Letters, vol. 5, no. 8, pp. 1529–1533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, “Carbon nanotubes—the route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Koziol, J. Vilatela, A. Moisala et al., “High-performance carbon nanotube fiber,” Science, vol. 318, no. 5858, pp. 1892–1895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science, vol. 306, no. 5700, pp. 1358–1361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Li, X. Zhang, R. F. DePaula et al., “Sustained growth of ultralong carbon nanotube arrays for fiber spinning,” Advanced Materials, vol. 18, no. 23, pp. 3160–3163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhang, Q. Li, T. G. Holesinger et al., “Ultrastrong, stiff, and lightweight carbon-nanotube fibers,” Advanced Materials, vol. 19, no. 23, pp. 4198–4201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Feng, K. Liu, J. S. Wu et al., “Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes,” Advanced Functional Materials, vol. 20, no. 6, pp. 885–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Naraghi, T. Filleter, A. Moravsky, M. Locascio, R. O. Loutfy, and H. D. Espinosa, “A multiscale study of high performance double-walled nanotube-polymer fibers,” ACS Nano, vol. 4, no. 11, pp. 6463–6476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Fang, M. Zhang, A. A. Zakhidov, and R. H. Baughman, “Structure and process-dependent properties of solid-state spun carbon nanotube yarns,” Journal of Physics Condensed Matter, vol. 22, no. 33, Article ID 334221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Jayasinghe, S. Chakrabarti, M. J. Schulz, and V. Shanov, “Spinning yarn from long carbon nanotube arrays,” Journal of Materials Research, vol. 26, pp. 1–7, 2011.
  17. L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Applied Physics Letters, vol. 94, no. 8, Article ID 081103, 2009. View at Publisher · View at Google Scholar
  18. J. H. Jung, T. J. Kang, and J. R. Youn, “Effect of bending rigidity on the capstan equation,” Textile Research Journal, vol. 74, no. 12, pp. 1085–1096, 2004. View at Scopus
  19. S. Hutton, C. Skourtis, and K. Atkinson, “Tensile and electrical properties of carbon nanotube yarns and knitted tubes in pure or composite form,” International Journal of Technology Transfer and Commercialisation, vol. 7, no. 2-3, pp. 258–264, 2008.