About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 319637, 14 pages
http://dx.doi.org/10.1155/2013/319637
Review Article

-Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications

Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology, Chongqing 401122, China

Received 19 June 2013; Revised 6 July 2013; Accepted 7 July 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Chuan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka, and N. Serpone, “Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles,” Environmental Science and Technology, vol. 32, no. 16, pp. 2394–2400, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. G. Yu, M. Jaroniec, and G. X. Lu, “TiO2 photocatalytic materials,” Internation Journal of Photoenergy, vol. 2012, Article ID 206183, 5 pages, 2012. View at Publisher · View at Google Scholar
  3. J. Yu, J. Xiong, B. Cheng, and S. Liu, “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity,” Applied Catalysis B, vol. 60, no. 3-4, pp. 211–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Wen, J. Zhao, G. Sheng, J. Fu, and P. Peng, “Photocatalytic reactions of phenanthrene at TiO2/water interfaces,” Chemosphere, vol. 46, no. 6, pp. 871–877, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Chun, W. Yizhong, and T. Hongxiao, “Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst,” Applied Catalysis B, vol. 35, no. 2, pp. 95–105, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kaneco, Y. Shimizu, K. Ohta, and T. Mizuno, “Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger,” Journal of Photochemistry and Photobiology A, vol. 115, no. 3, pp. 223–226, 1998. View at Scopus
  7. F. Moellers, H. J. Tolle, and R. Memming, “On the origin of the photocatalytic deposition of noble metals on TiO2,” Journal of the Electrochemical Society, vol. 121, no. 9, pp. 1160–1167, 1974. View at Scopus
  8. H. J. Hovel, “TiO2 antireflection coatings by a low temperature spray process,” Journal of the Electrochemical Society, vol. 125, no. 6, pp. 983–985, 1978.
  9. R. W. Matthews, “Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase,” Solar Energy, vol. 38, no. 6, pp. 405–413, 1987. View at Scopus
  10. W. Behnke, F. Nolting, and C. Zetzsch, “A smog chamber study on the impact of aerosols on the photodegradation of chemicals in the troposphere,” Journal of Aerosol Science, vol. 18, no. 1, pp. 65–71, 1987. View at Scopus
  11. Y. Tominaga, T. Kubo, and K. Hosoya, “Surface modification of TiO2 for selective photodegradation of toxic compounds,” Catalysis Communications, vol. 12, no. 9, pp. 785–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Hu, J. C. Yu, Z. Hao, and P. K. Wong, “Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions,” Applied Catalysis B, vol. 42, no. 1, pp. 47–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Saien, Z. Ojaghloo, A. R. Soleymani, and M. H. Rasoulifard, “Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate,” Chemical Engineering Journal, vol. 167, no. 1, pp. 172–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Ai, J. Li, L. Zhang, and S. Lee, “Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process,” Ultrasonics Sonochemistry, vol. 17, no. 2, pp. 370–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Fan, M. Cui, H. Liu et al., “Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna,” Environmental Pollution, vol. 159, no. 3, pp. 729–734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Tryba, “Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water,” Journal of Hazardous Materials, vol. 151, no. 2-3, pp. 623–627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Yates Jr., “Photochemistry on TiO2: mechanisms behind the surface chemistry,” Surface Science, vol. 603, no. 10–12, pp. 1605–1612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Liang, C. Liu, F. Li, and F. Wu, “The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension,” Chemical Engineering Journal, vol. 147, no. 2-3, pp. 219–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yu, J. Wang, and J. F. Parr, “Preparation and properties of TiO2/fumed silica composite photocatalytic materials,” Procedia Engineering, vol. 27, pp. 448–456, 2012.
  20. L. F. Qi, J. G. Yu, and M. Jaroniec, “Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2,” Adsorption, vol. 19, pp. 557–561, 2013.
  21. H. Zhang, R. Zong, J. Zhao, and Y. Zhu, “Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI,” Environmental Science and Technology, vol. 42, no. 10, pp. 3803–3807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Pekakis, N. P. Xekoukoulotakis, and D. Mantzavinos, “Treatment of textile dyehouse wastewater by TiO2 photocatalysis,” Water Research, vol. 40, no. 6, pp. 1276–1286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint, “Recent developments in photocatalytic water treatment technology: a review,” Water Research, vol. 44, no. 10, pp. 2997–3027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Xu, Z. Zheng, L. Z. Zhang, H. L. Zhang, and F. Deng, “Recent developments in photocatalytic water treatment technology: a review,” Journal of Solid State Chemistry, vol. 181, no. 9, pp. 2516–2522, 2008.
  25. A. A. Merdaw, A. O. Sharif, and G. A. W. Derwish, “Mass transfer in pressure-driven membrane separation processes, part I,” Chemical Engineering Journal, vol. 168, no. 1, pp. 215–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Lin and K. S. Lin, “Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures,” Chemosphere, vol. 66, no. 10, pp. 1872–1877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Scopus
  28. Q. Xiang, J. Yu, and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Z. Li, H. Liu, L. F. Cheng, and H. J. Tong, “Photocatalytic oxidation using a new catalyst—TiO2 microsphere—for water and wastewater treatment,” Environmental Science and Technology, vol. 37, no. 17, pp. 3989–3994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ohno, K. Tokieda, S. Higashida, and M. Matsumura, “Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene,” Applied Catalysis A, vol. 244, no. 2, pp. 383–391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Cong and Y. Xu, “Explaining the high photocatalytic activity of a mixed phase TiO2: a combined effect of O2 and crystallinity,” Journal of Physical Chemistry C, vol. 115, no. 43, pp. 21161–21168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Sun and Y. Xu, “Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water,” Journal of Physical Chemistry C, vol. 114, no. 44, pp. 18911–18918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Y. Gurkan, E. Kasapbasi, and Z. Cinar, “Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: characterization and DFT modeling of the surface,” Chemical Engineering Journal, vol. 214, pp. 34–44, 2013.
  34. J. Ananpattarachai, P. Kajitvichyanukul, and S. Seraphin, “Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Senthilnathan and L. Philip, “Photodegradation of methyl parathion and dichlorvos from drinking water with N-doped TiO2 under solar radiation,” Chemical Engineering Journal, vol. 172, no. 2-3, pp. 678–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Cha, S. H. An, H. D. Jang, C. S. Kim, D. K. Song, and T. Kim, “Synthesis and photocatalytic activity of N-doped TiO2/ZrO2 visible-light photocatalysts,” Advanced Powder Technology, vol. 23, no. 6, pp. 717–723, 2012.
  37. X. Xu, D. Yin, S. Wu, J. Wang, and J. Lu, “Preparation of oriented SiO32--doped TiO2 film and degradation of methylene blue under visible light irradiation,” Ceramics International, vol. 36, no. 2, pp. 443–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Liu, J. Liu, Y. Lin, Y. Zhang, and Y. Wei, “Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation,” Ceramics International, vol. 35, no. 8, pp. 3061–3065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Xu, D. Yin, S. Wu, J. Wang, and J. Lu, “Preparation of oriented SiO32--doped TiO2 film and degradation of methylene blue under visible light irradiation,” Ceramics International, vol. 36, no. 2, pp. 443–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Tian, K. Pan, H. Fu, L. Jing, and W. Zhou, “Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 939–944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Irie, Y. Watanabe, and K. Hashimoto, “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chemistry Letters, vol. 32, no. 8, pp. 772–773, 2003. View at Scopus
  42. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B, vol. 42, no. 4, pp. 403–409, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Liu, H. T. Ma, X. Z. Li, W. Z. Li, M. Wu, and X. H. Bao, “The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment,” Chemosphere, vol. 50, no. 1, pp. 39–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Mills and S. Le Hunte, “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 108, no. 1, pp. 1–35, 1997. View at Scopus
  45. W. Chu, W. K. Choy, and T. Y. So, “The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline,” Journal of Hazardous Materials, vol. 141, no. 1, pp. 86–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Marsh and D. Gorse, “A photoelectrochemical and ac impedance study of anodic titanium oxide films,” Electrochimica Acta, vol. 43, no. 7, pp. 659–670, 1997. View at Scopus
  47. H. Yu, S. Chen, X. Quan, H. Zhao, and Y. Zhang, “Fabrication of a TiO2-BDD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI),” Environmental Science and Technology, vol. 42, no. 10, pp. 3791–3796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. J. Testa, M. A. Grela, and M. I. Litter, “Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species,” Environmental Science and Technology, vol. 38, no. 5, pp. 1589–1594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Wang, N. Wang, L. Zhu, H. Yu, and H. Tang, “Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species,” Journal of Hazardous Materials, vol. 152, no. 1, pp. 93–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. S. Sohn, Y. R. Smith, M. Misra, and V. (Ravi) Subramanian, “Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes,” Applied Catalysis B, vol. 84, no. 3-4, pp. 372–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. R. K. Quinn, R. D. Nasby, and R. J. Baughman, “Photoassisted electrolysis of water using single crystal α-Fe2O3 anodes,” Materials Research Bulletin, vol. 11, no. 8, pp. 1011–1017, 1976. View at Scopus
  52. H. Liu, X. Z. Li, Y. J. Leng, and W. Z. Li, “An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8988–8996, 2003. View at Scopus
  53. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, and S. Ito, “A patterned-TiO2/SnO2 bilayer type photocatalyst,” Journal of Physical Chemistry B, vol. 104, no. 19, pp. 4586–4587, 2000. View at Scopus
  54. C. S. Turchi and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack,” Journal of Catalysis, vol. 122, no. 1, pp. 178–192, 1990. View at Scopus
  55. M. Ivanda, S. Musić, S. Popović, and M. Gotić, “XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol-gel method based on an esterification reaction,” Journal of Molecular Structure, vol. 480-481, pp. 645–649, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Wang, X. Zhang, H. Liu, X. Li, W. Li, and H. Xu, “Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres,” Journal of Hazardous Materials, vol. 163, no. 2-3, pp. 1101–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Z. Li, H. Liu, L. F. Cheng, and H. J. Tong, “Kinetic behaviour of the adsorption and photocatalytic degradation of salicylic acid in aqueous TiO2 microsphere suspension,” Journal of Chemical Technology and Biotechnology, vol. 79, no. 7, pp. 774–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Liu, C. L. Yu, and C. Wang, “Economics and its implication of photocatalyst recycling for water purification,” in Handbook of Photocatalysts, pp. 527–534, Nova Science Publishers, 2009.
  59. M. Y. Ghaly, T. S. Jamil, I. E. El-Seesy, E. R. Souaya, and R. A. Nasr, “Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2,” Chemical Engineering Journal, vol. 168, no. 1, pp. 446–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. G. Yu, Q. Li, S. W. Liu, and M. Jaroniec, “Ionic-liquie-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visble-light photocatalytic activity,” Chemistry A European Journal, vol. 19, pp. 2433–2441, 2013.
  61. S. Liu, L. Yang, S. Xu, S. Luo, and Q. Cai, “Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite,” Electrochemistry Communications, vol. 11, no. 9, pp. 1748–1751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Zhang and H. Zhu, “Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric,” Applied Surface Science, vol. 258, no. 24, pp. 10034–10041, 2012.
  63. S. H. Othman, S. A. Rashid, T. I. M. Ghazi, and N. Abdulah, “Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications,” Journal of Nanomaterials, vol. 2012, Article ID 718214, 10 pages, 2012. View at Publisher · View at Google Scholar
  64. H. Liu, S. Cheng, J. Zhang, C. Cao, and S. Zhang, “Titanium dioxide as photocatalyst on porous nickel: adsorption and the photocatalytic degradation of sulfosalicylic acid,” Chemosphere, vol. 38, no. 2, pp. 283–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Z. Li, H. L. Liu, P. T. Yue, and Y. P. Sun, “Photoelectrocatalytic oxidation of rose Bengal in aqueous solution using a Ti/TiO2 mesh electrode,” Environmental Science and Technology, vol. 34, no. 20, pp. 4401–4406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. P. F. Lee, X. Zhang, D. D. Sun, J. Du, and J. O. Leckie, “Synthesis of bimodal porous structured TiO2 microsphere with high photocatalytic activity for water treatment,” Colloids and Surfaces A, vol. 324, no. 1–3, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Xie, D. Jiang, M. Chen et al., “Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity,” Colloids and Surfaces A, vol. 372, no. 1–3, pp. 107–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Němec, C. Kadlec, F. Kadlec et al., “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Applied Physics Letters, vol. 100, no. 6, Article ID 061117, pp. 891–894, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Cesano, D. Pellerej, D. Scarano, G. Ricchiardi, and A. Zecchina, “Radially organized pillars in TiO2 and in TiO2/C microspheres: synthesis, characterization and photocatalytic tests,” Journal of Photochemistry and Photobilogy A, vol. 242, pp. 51–58, 2012.
  70. M. Ye, Y. Yang, Y. Zhang, T. Zhang, and W. Shao, “Hydrothermal synthesis of hydrangea-like F-doped titania microspheres for the photocatalytic degradation of carbamazepine under UV and visible light irradiation,” Journal of Nanomaterials, vol. 2012, Article ID 583417, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Mozia, P. Brożek, J. Przepiórski, B. Tryba, and A. W. Morawski, “Immobilized TiO2 for phenol degrdation in a pilot-scale photocatalytic reactor,” Journal of Nanomaterials, vol. 2012, Article ID 949764, 10 pages, 2012. View at Publisher · View at Google Scholar
  72. P. Zhou, J. G. Yu, and Y. X. Wang, “The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles,” Applied Catalysis B, vol. 142-143, pp. 45–53, 2013.
  73. E. S. Elmolla and M. Chaudhuri, “The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment,” Desalination, vol. 272, no. 1–3, pp. 218–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Jin, M. Wu, G. Zhao, and M. Li, “Photocatalysis-enhanced electrosorption process for degradation of high-concentration dye wastewater on TiO2/carbon aerogel,” Chemical Engineering Journal, vol. 168, no. 3, pp. 1248–1255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Prieto-Rodriguez, S. Miralles-Cuevas, I. Oller, A. Agüera, G. L. Puma, and S. Malato, “Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations,” Journal of Hazardous Materials, vol. 211-212, pp. 131–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. M. N. Chong and B. Jin, “Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater,” Journal of Hazardous Materials, vol. 199-200, pp. 135–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Chen and W. Chu, “Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis,” Journal of Hazardous Materials, vol. 219-220, pp. 183–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Nasuhoglu, A. Rodayan, D. Berk, and V. Yargeau, “Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis,” Chemical Engineering Journal, vol. 189-190, pp. 41–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Nakano, R. Chand, E. Obuchi, K. Katoh, and K. Nakano, “Performance of TiO2 photocatalyst supported on silica beads for purification of wastewater after absorption of reflow exhaust gas,” Chemical Engineering Journal, vol. 176-177, pp. 260–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. N. N. Rao, V. Chaturvedi, and G. Li Puma, “Novel pebble bed photocatalytic reactor for solar treatment of textile wastewater,” Chemical Engineering Journal, vol. 184, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. I. Catanzaro, G. Avellone, G. Marcì et al., “Biological effects and photodegradation by TiO2 of terpenes present in industrial wastewater,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 591–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Qiu, D. Zhang, Z. Diao et al., “Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation,” Water Research, vol. 46, no. 7, pp. 2299–2306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Zhang, Y. Li, Y. Su, K. Mao, and Q. Wang, “Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent,” Journal of Hazardous Materials, vol. 215-216, pp. 252–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Xu, J. Jia, D. Zhong, and Y. Wang, “Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode,” Chemical Engineering Journal, vol. 150, no. 2-3, pp. 302–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Yao, K. Li, S. Chen, J. Jia, Y. Wang, and H. Wang, “Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode,” Chemical Engineering Journal, vol. 187, pp. 29–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Boroski, A. C. Rodrigues, J. C. Garcia, L. C. Sampaio, J. Nozaki, and N. Hioka, “Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 448–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. H. El Hajjouji, F. Barje, E. Pinelli et al., “Photochemical UV/TiO2 treatment of olive mill wastewater (OMW),” Bioresource Technology, vol. 99, no. 15, pp. 7264–7269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Nakano, E. Obuchi, S. Takagi et al., “Photocatalytic treatment of water containing dinitrophenol and city water over TiO2/SiO2,” Separation and Purification Technology, vol. 34, no. 1–3, pp. 67–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Wu, H. You, R. Zhang, C. Chen, and D. J. Lee, “Ballast waters treatment using UV/Ag-TiO2+O3 advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms,” Chemical Engineering Journal, vol. 174, no. 2-3, pp. 714–718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Han, M. Pelaez, V. Likodimos et al., “Innovative visible light-activated sulfur doped TiO2 films for water treatment,” Applied Catalysis B, vol. 107, no. 1-2, pp. 77–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Bergamasco, F. V. da Silva, F. S. Arakawa et al., “Drinking water treatment in a gravimetric flow system with TiO2 coated membranes,” Chemical Engineering Journal, vol. 174, no. 1, pp. 102–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Ochiai, K. Nakata, T. Murakami et al., “Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst,” Water Research, vol. 44, no. 3, pp. 904–910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. E. López Loveira, P. S. Fiol, A. Senn, G. Curutchet, R. Candal, and M. I. Litter, “TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water,” Separation and Purification Technology, vol. 91, pp. 108–116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Pelaez, P. Falaras, A. G. Kontos et al., “A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV-vis light photocatalytic activity,” Applied Catalysis B, vol. 121, pp. 30–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. M. G. Antoniou, P. A. Nicolaou, J. A. Shoemaker, A. A. de la Cruz, and D. D. Dionysiou, “Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR,” Applied Catalysis B, vol. 91, no. 1-2, pp. 165–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Zhang, K. C. Kemp, and V. Chandra, “Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment,” Materials Letters, vol. 81, pp. 127–130, 2012.
  97. L. Rizzo, “Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 48–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. G. E. Romanos, C. P. Athanasekou, F. K. Katsaros et al., “Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification,” Journal of Hazardous Materials, vol. 211-212, pp. 304–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. P. A. Pekakis, N. P. Xekoukoulotakis, and D. Mantzavinos, “Treatment of textile dyehouse wastewater by TiO2 photocatalysis,” Water Research, vol. 40, no. 6, pp. 1276–1286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Lin, M. N. Xie, Y. M. Liang, Y. Q. He, G. Y. S. Chan, and T. G. Luan, “Degradation of cypermethrin, malathion and dichlorovos in water and on tea leaves with O3/UV/TiO2 treatment,” Food Control, vol. 28, no. 2, pp. 374–379, 2012.
  101. J. L. Esbenshade, J. C. Cardoso, and M. V. B. Zanoni, “Removal of sunscreen compounds from swimming pool water using self-organized TiO2 nanotubular array electrodes,” Journal of Photochemistry and Photobiology A, vol. 214, no. 2-3, pp. 257–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Ma, X. Quan, Y. Zhang, S. Chen, and H. Zhao, “Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification,” Journal of Membrane Science, vol. 335, no. 1-2, pp. 58–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. D. N. Bui, S. Z. Kang, X. Li, and J. Mu, “Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles,” Catalysis Communications, vol. 13, no. 1, pp. 14–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. J. A. Rengifo-Herrera and C. Pulgarin, “Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation,” Solar Energy, vol. 84, no. 1, pp. 37–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Sun, H. Liu, J. Ma, X. Wang, B. Wang, and L. Han, “Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance,” Journal of Hazardous Materials, vol. 156, no. 1–3, pp. 552–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Zhao, C. Chen, Y. Wang et al., “Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer,” Environmental Science and Technology, vol. 42, no. 1, pp. 308–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. S. M. Chang and W. S. Liu, “Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2,” Applied Catalysis B, vol. 101, no. 3-4, pp. 333–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. Q. Li, C. Zhang, and J. Li, “Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method,” Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1953–1957, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Xu, J. Li, J. Wang et al., “Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+:YAlO3/Fe- and Co-doped TiO2 coated composites,” Solar Energy Materials and Solar Cells, vol. 94, no. 6, pp. 1157–1165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. R. F. Chen, C. X. Zhang, J. Deng, and G. Q. Song, “Preparation and photocatalytic activity of Cu2+-doped TiO2/SiO2,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 2, pp. 220–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. G. G. Liu, X. Z. Zhang, Y. J. Xu, X. S. Niu, L. Q. Zheng, and X. J. Ding, “Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2,” Chemosphere, vol. 55, no. 9, pp. 1287–1291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Pipelzadeh, A. A. Babaluo, M. Haghighi, A. Tavakoli, M. V. Derakhshan, and A. K. Behnami, “Silver doping on TiO2 nanoparticles using a sacrificial acid and its photocatalytic performance under medium pressure mercury UV lamp,” Chemical Engineering Journal, vol. 155, no. 3, pp. 660–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. X. Lin, F. Rong, D. Fu, and C. Yuan, “Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants,” Powder Technology, vol. 219, pp. 173–178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. L. G. Devi, B. Nagaraj, and K. E. Rajashekhar, “Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor,” Chemical Engineering Journal, vol. 181-182, pp. 259–266, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. X. Li, R. Xiong, and G. Wei, “Preparation and photocatalytic activity of nanoglued Sn-doped TiO2,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 587–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. Z. M. El-Bahy, A. A. Ismail, and R. M. Mohamed, “Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue),” Journal of Hazardous Materials, vol. 166, no. 1, pp. 138–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. F. Shojaie and M. H. Loghmani, “La3+ and Zr4+ co-doped anatase nano TiO2 by sol-microwave method,” Chemical Engineering Journal, vol. 157, no. 1, pp. 263–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Fan, P. Xue, and Y. Sun, “Preparation of Nano-TiO2 doped with cerium and its photocatalytic activity,” Journal of Rare Earths, vol. 24, no. 3, pp. 309–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Yang, P. Liu, X. Li, and S. Li, “The photo-catalytic activities of neodymium and fluorine doped TiO2 nanoparticles,” Ceramics International, vol. 38, no. 6, pp. 4791–4796, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. W. Sangkhun, L. Laokiat, V. Tanboonchuy, P. Khamdahsag, and N. Grisdanurak, “Photocatalytic degradation of BTEX using W-doped TiO2 immobilized on fiberglass cloth under visible light,” Superlattices and Microstructures, vol. 52, no. 4, pp. 632–642, 2012.
  121. J. Gong, C. Yang, W. Pu, and J. Zhang, “Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate,” Chemical Engineering Journal, vol. 167, no. 1, pp. 190–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Y. Gong, W. H. Pu, C. Z. Yang, and J. D. Zhang, “Tungsten and nitrogen co-doped TiO2 electrode sensitized with Fe-chlorophyllin for visible light photoelectrocatalysis,” Chemical Engineering Journal, vol. 209, pp. 94–101, 2012.
  123. Y. Hu, Y. T. Cao, P. X. Wang et al., “A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2,” Applied Catalysis B, vol. 125, pp. 294–303, 2012.