About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 325827, 8 pages
http://dx.doi.org/10.1155/2013/325827
Research Article

The Geometry Variation of As-Grown Carbon Coils with Ni Layer Thickness and Hydrogen Plasma Pretreatment

Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736, Republic of Korea

Received 6 February 2013; Accepted 11 March 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 Young-Chul Jeon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Davis, R. J. Slawson, and G. R. Rigby, “An unusual form of carbon,” Nature, vol. 171, no. 4356, p. 756, 1953. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ihara and S. Itoh, “Helically coiled and toroidal cage forms of graphitic carbon,” Carbon, vol. 33, no. 7, pp. 931–939, 1995. View at Scopus
  3. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, “A formation mechanism for catalytically grown helix-shaped graphite nanotubes,” Science, vol. 265, no. 5172, pp. 635–637, 1994. View at Scopus
  4. S. Hokushin, L. Pan, Y. Konishi, H. Tanaka, and Y. Nakayama, “Field emission properties and structural changes of a stand-alone carbon nanocoil,” Japanese Journal of Applied Physics, vol. 46, no. 23, pp. L565–L567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Hernadi, L. Thiên-Nga, and L. Forró, “Growth and microstructure of catalytically produced coiled carbon nanotubes,” Journal of Physical Chemistry B, vol. 105, no. 50, pp. 12464–12468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Akagi, R. Tamura, M. Tsukada, S. Itoh, and S. Ihara, “Electronic structure of helically coiled cage of graphitic carbon,” Physical Review Letters, vol. 74, no. 12, pp. 2307–2310, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Schaper, H. Hou, A. Greiner, and F. Phillipp, “The role of iron carbide in multiwalled carbon nanotube growth,” Journal of Catalysis, vol. 222, no. 1, pp. 250–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Yu, D. Chen, B. Tøtdal, and A. Holmen, “Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition,” Journal of Physical Chemistry B, vol. 109, no. 13, pp. 6096–6102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, and A. M. Rao, “Rational synthesis of helically coiled carbon nanowires and nanotubes through the use of tin and indium catalysts,” Advanced Materials, vol. 20, no. 1, pp. 179–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-C. Jeon, J.-H. Eum, S.-H. Kim, J.-C. Park, and S. I. Ahn, “Effect of the on/off cycling modulation time ratio of C2H2/SF6 flows on the formation of geometrically controlled carbon coils,” Journal of Nanomaterials, vol. 2012, Article ID 908961, 6 pages, 2012. View at Publisher · View at Google Scholar
  11. H. Hou, Z. Jun, F. Weller, and A. Greiner, “Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor,” Chemistry of Materials, vol. 15, no. 16, pp. 3170–3175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. W. In-Hwang, H. Yanagida, and S. Motojima, “Vapor growth of carbon micro-coils by the Ni catalyzed pyrolysis of acetylene using rotating substrate,” Materials Letters, vol. 43, no. 1, pp. 11–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, “Catalytic effects of metal carbides, oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers,” Carbon, vol. 34, no. 3, pp. 289–296, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Tang, J. Wen, Y. Zhang, F. Liu, K. Lin, and Y. Du, “Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties,” ACS Nano, vol. 4, no. 1, pp. 241–250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Zhang, L. Yu, and Z. Cui, “Effects of the size of nano-copper catalysts and reaction temperature on the morphology of carbon fibers,” Materials Research Bulletin, vol. 43, no. 3, pp. 735–742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Hokushin, L. Pan, and Y. Nakayama, “Diameter control of carbon nanocoils by the catalyst of organic metals,” Japanese Journal of Applied Physics, vol. 46, no. 8, pp. 5383–5385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. R. Bandaru, C. Daraio, K. Yang, and A. M. Rao, “A plausible mechanism for the evolution of helical forms in nanostructure growth,” Journal of Applied Physics, vol. 101, no. 9, Article ID 094307, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W.-C. Liu, H.-K. Lin, Y.-L. Chen, C.-Y. Lee, and H.-T. Chiu, “Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene,” ACS Nano, vol. 4, no. 7, pp. 4149–4157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-Y. Tsou, C.-Y. Lee, and H.-T. Chiu, “K and Au bicatalyst assisted growth of Carbon nanocoils from acetylene: effect of deposition parameters on field emission properties,” ACS Applied Materials & Interfaces, vol. 4, no. 12, pp. 6505–6511, 2012.
  20. X. Qi, C. Qin, W. Zhong, C. Au, X. Ye, and Y. Du, “Large-scale synthesis of carbon nanomaterials by catalytic chemical vapor deposition: a review of the effects of synthesis parameters and magnetic properties,” Materials, vol. 3, no. 8, pp. 4142–4174, 2010.
  21. A. C. Dupuis, “The catalyst in the CCVD of carbon nanotubes-a review,” Progress in Materials Science, vol. 50, no. 8, pp. 929–961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Park, S.-H. Kim, and T.-G. Kim, “Effect of Si and SiO2 substrates on the geometries of as-grown carbon coils,” Journal of Nanomaterials, vol. 2012, Article ID 389248, 8 pages, 2012. View at Publisher · View at Google Scholar
  23. H. Bi, K. C. Kou, K. Ostrikov, L. K. Yan, and J. Q. Zhang, “Unconventional Ni-P alloy-catalyzed CVD of carbon coil-like micro- and nano-structures,” Materials Chemistry and Physics, vol. 116, pp. 442–448, 2009.
  24. J.-H. Eum, S.-H. Kim, S. S. Yi, and K. Jang, “Large-scale synthesis of the controlled-geometry carbon coils by the manipulation of the SF6 gas flow injection time,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 5, pp. 4397–4402, 2012.
  25. M. Kawaguchi, K. Nozaki, S. Motojima, and H. Iwanaga, “A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis,” Journal of Crystal Growth, vol. 118, no. 3-4, pp. 309–313, 1992. View at Scopus
  26. J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, vol. 37, no. 4–6, pp. 129–281, 2002.
  27. K. Shibagaki, S. Motojima, Y. Umemoto, and Y. Nishitani, “Outermost surface microstructure of as-grown, heat-treated and partially oxidized carbon microcoils,” Carbon, vol. 39, no. 9, pp. 1337–1342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970.
  29. S. M. Mominuzzaman, K. M. Krishna, T. Soga, T. Jimbo, and M. Umeno, “Raman spectra of ion beam sputtered amorphous carbon thin films deposited from camphoric carbon,” Carbon, vol. 38, no. 1, pp. 127–131, 2000. View at Scopus
  30. H. Darmstadt, L. Sümmchen, J.-M. Ting, U. Roland, S. Kaliaguine, and C. Roy, “Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers,” Carbon, vol. 35, no. 10-11, pp. 1581–1585, 1997.