About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 327597, 10 pages
http://dx.doi.org/10.1155/2013/327597
Research Article

Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

1Centre of Polymer Systems, University Institute, Tomas Bata University, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic
2Balikesir University, Faculty of Necatibey Education, Department of Secondary Science and Mathematics Education, 10100 Balikesir, Turkey
3Tomas Bata University, Faculty of Technology, Polymer Centre, TGM 275, 760 01 Zlin, Czech Republic
4Institute of Hydrodynamics, Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic

Received 15 March 2013; Accepted 18 August 2013

Academic Editor: Sulin Zhang

Copyright © 2013 R. Benlikaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Barick and D. K. Tripathy, “Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites,” Materials Science and Engineering B, vol. 176, no. 18, pp. 1435–1447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Barick and D. K. Tripathy, “Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding,” Composites Part A, vol. 41, no. 10, pp. 1471–1482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Fan, Z. Qin, T. Villmow et al., “Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks,” Sensors and Actuators B, vol. 156, no. 1, pp. 63–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Slobodian, P. Riha, and P. Saha, “A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane,” Carbon, vol. 50, no. 10, pp. 3446–3453, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. F. Lima, V. G. de Castro, R. S. Borges, and G. G. Silva, “Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites,” Polímeros, vol. 22, pp. 117–124, 2012.
  6. D. M. Crawford, R. G. Bass, and T. W. Haas, “Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers,” Thermochimica Acta, vol. 323, no. 1-2, pp. 53–63, 1998. View at Scopus
  7. R. Olejnik, P. Slobodian, P. Riha, and P. Saha, “An electrically-conductive and organic solvent vapors detecting composite composed of an entangled network of carbon nanotubes embedded in polystyrene,” Journal of Nanomaterials, vol. 2012, Article ID 365062, 7 pages, 2012. View at Publisher · View at Google Scholar
  8. M. D. Rein, O. Breuer, and H. D. Wagner, “Sensors and sensitivity: carbon nanotube buckypaper films as strain sensing devices,” Composites Science and Technology, vol. 71, no. 3, pp. 373–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Materials and Structures, vol. 15, no. 3, pp. 737–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Jiang, Y. Li, J. Xie, J. Sun, D. Hui, and Y. Qiu, “Plasma functionalization of bucky paper and its composite with phenylethynyl-terminated polyimide,” Composites Part B, vol. 45, pp. 1275–1281, 2013.
  11. P. Pötschke, N. P. Zschoerper, B. P. Moller, and U. Vohrer, “Plasma functionalization of multiwalled carbon nanotube bucky papers and the effect on properties of melt-mixed composites with polycarbonate,” Macromolecular Rapid Communications, vol. 30, no. 21, pp. 1828–1833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Špitalský, C. A. Krontiras, S. N. Georga, and C. Galiotis, “Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites,” Composites Part A, vol. 40, no. 6-7, pp. 778–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Rein, H. Bar, O. Breuer, R. Yoseph, and H. D. Wagner, “Electromechanical properties of carbon nanotube buckypapers,” in Proceedings of the 17th International Conference on Composite Materials (ICCM-17 '09), Edinburgh, UK, July 2009. View at Scopus
  14. P. Slobodian, P. Riha, A. Lengalova, P. Svoboda, and P. Saha, “Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection,” Carbon, vol. 49, no. 7, pp. 2499–2507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. A. Jansson, Ed., Deconvolution of Spectra and Images, Academic Press, San Diego, Calif, USA, 1997.
  16. F. A. Abuilaiwi, T. Laoui, M. Al-Harthi, and M. A. Atieh, “Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification,” Arabian Journal for Science and Engineering, vol. 35, no. 1, pp. 37–48, 2010. View at Scopus
  17. J. Zhang, H. Zou, Q. Qing et al., “Effect of chemical oxidation on the structure of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 107, no. 16, pp. 3712–3718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. E. Fanning and M. A. Vannice, “A DRIFTS study of the formation of surface groups on carbon by oxidation,” Carbon, vol. 31, no. 5, pp. 721–730, 1993. View at Scopus
  19. T. G. Ros, A. J. Van Dillen, J. W. Geus, and D. C. Koningsberger, “Surface oxidation of carbon nanofibres,” Chemistry, vol. 8, pp. 1151–1162, 2002.
  20. C. Moreno-Castilla, M. V. López-Ramón, and F. Carrasco-Marín, “Changes in surface chemistry of activated carbons by wet oxidation,” Carbon, vol. 38, no. 14, pp. 1995–2001, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. U. J. Kim, C. A. Furtado, X. Liu, G. Chen, and P. C. Eklund, “Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 44, pp. 15437–15445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Liang, H. Zhang, B. Yi, Z. Zhang, and Z. Tan, “Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells,” Carbon, vol. 43, no. 15, pp. 3144–3152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann, and D. H. Fairbrother, “Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments,” Carbon, vol. 49, no. 1, pp. 24–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, Q. Chen, and Q. Ma, “Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes,” Journal of Colloid and Interface Science, vol. 370, no. 1, pp. 32–38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-T. Fang, C.-G. Liu, C. Liu, F. Li, M. Liu, and H.-M. Cheng, “Purification of single-wall carbon nanotubes by electrochemical oxidation,” Chemistry of Materials, vol. 16, no. 26, pp. 5744–5750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Slobodian, R. Olejnik, P. Riha, and P. Saha, “Effect of functionalized nanotubes with HNO3 on electrical sensory properties of carbon nanotubes/polyurethane composite under elongation,” in Mathematical Methods and Techniques in Engineering and Environmental Science, M. Demiralp, Z. Bojkovic, and A. Repanovici, Eds., pp. 312–316, WSEAS Press, 2011.
  27. T. W. Tombler, C. Zhou, L. Alexseyev et al., “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, vol. 405, no. 6788, pp. 769–772, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. W.-L. Wang, K.-J. Liao, Y. Li, and Y.-T. Wang, “Piezoresistive effect of doped carbon nanotube/cellulose films,” Chinese Physics Letters, vol. 20, no. 9, pp. 1544–1547, 2003. View at Publisher · View at Google Scholar · View at Scopus