About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 349140, 9 pages
http://dx.doi.org/10.1155/2013/349140
Research Article

Titanium Dioxide Nanoparticles Induced Proinflammation of Primary Cultured Cardiac Myocytes of Rat

1Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
2Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China

Received 14 June 2013; Accepted 26 July 2013

Academic Editor: Xiaoming Li

Copyright © 2013 Wei Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Linse, C. Cabaleiro-Lago, W. F. Xue et al., “Nucleation of protein fibrillation by nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8691–8696, 2007.
  2. X. Li, H. Gao, M. Uo, et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research Part A, vol. 91, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar
  3. X. Li, L. Wang, Y. Fan, Q. Feng, and F. Cui, “Biocompatibility and toxicity of nanoparticles and nanotubes,” Journal of Nanomaterials, vol. 2012, Article ID 548389, 19 pages, 2012. View at Publisher · View at Google Scholar
  4. L. Yildirimer, N. T. K. Thanh, M. Loizidou, and A. M. Seifalian, “Toxicological considerations of clinically applicable nanoparticles,” Nano Today, vol. 6, no. 6, pp. 585–607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Li, L. Wang, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research Part A, vol. 101, no. 8, pp. 2424–2435, 2013. View at Publisher · View at Google Scholar
  6. X. Li, H. Gao, M. Uo et al., “Maturation of osteoblast-like SaoS2 induced by carbon nanotubes,” Biomedical Materials, vol. 4, no. 1, Article ID 015005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Donaldson, V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm, “Nanotoxicology,” Occupational and Environmental Medicine, vol. 61, no. 9, pp. 727–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Li, H. Liu, X. Niu et al., “Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics,” Journal of Biomedical Materials Research Part B, vol. 97, no. 1, pp. 10–19, 2011. View at Publisher · View at Google Scholar
  12. D. B. Warheit, R. A. Hoke, C. Finlay, E. M. Donner, K. L. Reed, and C. M. Sayes, “Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management,” Toxicology Letters, vol. 171, no. 3, pp. 99–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Skocaj, M. Filipic, J. Petkovic, and S. Novak, “Titanium dioxide in our everyday life; Is it safe?” Radiology and Oncology, vol. 45, no. 4, pp. 227–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Wang, G. Zhou, C. Chen et al., “Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration,” Toxicology Letters, vol. 168, no. 2, pp. 176–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Pan, W. Lee, L. Slutsky, R. A. F. Clark, N. Pernodet, and M. H. Rafailovich, “Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells,” Small, vol. 5, no. 4, pp. 511–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205–214, 2004. View at Scopus
  18. D. B. Warheit, W. J. Brock, K. P. Lee, T. R. Webb, and K. L. Reed, “Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity,” Toxicological Sciences, vol. 88, no. 2, pp. 514–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Olmedo, M. B. Guglielmotti, and R. L. Cabrini, “An experimental study of the dissemination of titanium and zirconium in the body,” Journal of Materials Science: Materials in Medicine, vol. 13, no. 8, pp. 793–796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Wu, W. Liu, C. Xue et al., “Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure,” Toxicology Letters, vol. 191, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Sheng, X. Wang, X. Sang, et al., “Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide,” Journal of Biomedical Materials Research Part A, 2013. View at Publisher · View at Google Scholar
  22. J.-X. Wang, Y.-B. Fan, Y. Gao, Q.-H. Hu, and T.-C. Wang, “TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection,” Biomaterials, vol. 30, no. 27, pp. 4590–4600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Zheng, Y. B. Lu, S. T. Liang, et al., “SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes,” Basic Research in Cardiology, vol. 108, no. 4, p. 364, 2013. View at Publisher · View at Google Scholar
  24. S. Hackenberg, G. Friehs, K. Froelich et al., “Intracellular distribution, geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells,” Toxicology Letters, vol. 195, no. 1, pp. 9–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. E. Nel, L. Mädler, D. Velegol et al., “Understanding biophysicochemical interactions at the nano-bio interface,” Nature Materials, vol. 8, no. 7, pp. 543–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Li, Y. Yang, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, “Biocomposites reinforced by fibers or tubes, as scaffolds for tissue engineering or regenerative medicine,” Journal of Biomedical Materials Research Part A, 2013. View at Publisher · View at Google Scholar
  28. X. Li, X. Liu, W. Dong et al., “In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers,” Journal of Biomedical Materials Research Part B, vol. 90, no. 2, pp. 503–509, 2009. View at Publisher · View at Google Scholar
  29. E. Oberdörster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004. View at Scopus
  30. X. Li, Y. Fan, and F. Watari, “Current investigations into carbon nanotubes for biomedical application,” Biomedical Materials, vol. 5, no. 2, Article ID 022001, 2010. View at Publisher · View at Google Scholar
  31. X. Li, X. Liu, J. Huang, Y. Fan, and F.-Z. Cui, “Biomedical investigation of CNT based coatings,” Surface and Coatings Technology, vol. 206, no. 4, pp. 759–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. E. Gratton, P. A. Ropp, P. D. Pohlhaus, et al., “The effect of particle design on cellular internalization pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 33, pp. 11613–11618, 2008. View at Publisher · View at Google Scholar
  33. X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Shen, K. Cai, Z. Yang, Y. Yan, W. Yang, and P. Liu, “Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating,” Colloids and Surfaces B, vol. 94, pp. 347–353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Li, Y. Huang, L. Zheng et al., “Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro,” Journal of Biomedical Materials Research Part A, 2013. View at Publisher · View at Google Scholar
  36. C. M. Sayes, R. Wahi, P. A. Kurian et al., “Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells,” Toxicological Sciences, vol. 92, no. 1, pp. 174–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Huang, X. Teng, D. Chen, F. Tang, and J. He, “The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function,” Biomaterials, vol. 31, no. 3, pp. 438–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-R. Gurr, A. S. S. Wang, C.-H. Chen, and K.-Y. Jan, “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells,” Toxicology, vol. 213, no. 1-2, pp. 66–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Xia, M. Kovochich, J. Brant et al., “Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm,” Nano Letters, vol. 6, no. 8, pp. 1794–1807, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Peters, R. E. Unger, C. J. Kirkpatrick, A. M. Gatti, and E. Monari, “Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation,” Journal of Materials Science: Materials in Medicine, vol. 15, no. 4, pp. 321–325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Schutte, L. Xie, B. Klitzman, and W. M. Reichert, “In vivo cytokine-associated responses to biomaterials,” Biomaterials, vol. 30, no. 2, pp. 160–168, 2009. View at Publisher · View at Google Scholar · View at Scopus