About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 356259, 9 pages
http://dx.doi.org/10.1155/2013/356259
Research Article

A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

1Air Force Research Laboratory (AFRL), Wright-Patterson, Air Force Base, OH 45433, USA
2Wright State University, Dayton, OH 45420, USA
3Army Research Laboratory, Adelphi, MD 20783, USA
4Army Research Office, Research Triangle Park, NC 27709, USA
5University of Dayton Research Institute (UDRI), Dayton, OH 45469, USA

Received 28 November 2012; Accepted 17 February 2013

Academic Editor: Lijun Ji

Copyright © 2013 Betty T. Quinton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Meyyappan, Carbon Nanotubes: Science and Applications, CRC Press, Boca Raton, Fla, USA, 2004.
  2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  3. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, vol. 60, no. 18, pp. 2204–2206, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Calvert, “Strength in disunity,” Nature, vol. 357, no. 6377, pp. 365–366, 1992. View at Scopus
  5. N. V. Novikov and S. N. Dub, “Hardness and fracture toughness of CVD diamond film,” Diamond and Related Materials, vol. 5, no. 9, pp. 1026–1030, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. S. V. Kidalov and F. M. Shakhov, “Thermal conductivity of diamond composites,” Materials, vol. 2, pp. 2467–2495, 2009. View at Publisher · View at Google Scholar
  7. C. J. Lee, S. C. Lyu, Y. R. Cho, J. H. Lee, and K. I. Cho, “Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition,” Chemical Physics Letters, vol. 341, no. 3-4, pp. 245–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, vol. 61, no. 13, pp. 1899–1912, 2001. View at Scopus
  9. N. Tumilty, L. Kasharina, T. Prokhoda, B. Sinelnikov, and R. B. Jackman, “Synthesis of carbon nanotubes on single crystal diamond,” Carbon, vol. 48, no. 11, pp. 3027–3032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Varanasi, J. Petry, L. Brunke et al., “Growth of high-quality carbon nanotubes on free-standing diamond substrates,” Carbon, vol. 48, no. 9, pp. 2442–2446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Takagi, Y. Kobayashi, and Y. Homma, “Carbon nanotube growth from diamond,” Journal of the American Chemical Society, vol. 131, no. 20, pp. 6922–6923, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” Journal of Physical Chemistry B, vol. 105, no. 46, pp. 11424–11431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Helveg, C. López-Cartes, J. Sehested et al., “Atomic-scale imaging of carbon nanofibre growth,” Nature, vol. 427, no. 6973, pp. 426–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” Journal of Catalysis, vol. 26, no. 1, pp. 51–62, 1972. View at Scopus
  15. C. T. Wirth, S. Hofmann, and J. Robertson, “State of the catalyst during carbon nanotube growth,” Diamond and Related Materials, vol. 18, pp. 940–945, 2009. View at Publisher · View at Google Scholar
  16. J. Y. Raty, F. Gygi, and G. Galli, “Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations,” Physical Review Letters, vol. 95, no. 9, Article ID 096103, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hofmann, G. Csányi, A. Ferrari, M. Payne, and J. Robertson, “Surface diffusion: the low activation energy path for nanotube growth,” Physical Review Letters, vol. 95, Article ID 036101, 4 pages, 2005.
  18. K. Koziol, B. O. Boskovic, and N. Yahya, Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, Henry Dickens, Columbia, SC, USA, 2011.
  19. Y. C. Choi, D. J. Bae, Y. H. Lee et al., “Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature,” Journal of Vacuum Science and Technology A, vol. 18, no. 4, pp. 1864–1868, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. Teo, B. K. Kenneth, C. Singh, M. Chhowalla, and W. Milne, Encyclopedia of Nanoscience and Nanotechnology, 2003.
  21. A. J. S. Fernandes, M. Pinto, M. A. Neto, F. J. Oliveira, R. F. Silva, and F. M. Costa, “Nano carbon hybrids from the simultaneous synthesis of CNT/NCD by MPCVD,” Diamond and Related Materials, vol. 18, no. 2-3, pp. 160–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, and K. Turner, “Silicon oxide thickness-dependent growth of carbon nanotubes,” Applied Physics Letters, vol. 84, no. 1, pp. 109–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Mukhopadhyay, A. Karumuri, and I. T. Barney, “Hierarchical nanostructures by nanotube grafting on porous cellular surfaces,” Journal of Physics D, vol. 42, no. 19, Article ID 195503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Mukhopadhyay, P. Joshi, and R. V. Pulikollu, “Thin films for coating nanomaterials,” Tsinghua Science & Technology, vol. 10, no. 6, pp. 709–717, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. L. Lauer, Handbook of Raman Spectroscopy from the Research Laboratory to the Process Line, Marcel Dekker, West Yorkshire, UK, 1st edition, 2001.
  26. Y. Homma, Y. Kobayashi, T. Ogino et al., “Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition,” Journal of Physical Chemistry B, vol. 107, no. 44, pp. 12161–12164, 2003. View at Scopus
  27. M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, and E. S. Aydil, “Hydrogen etching and cutting of multiwall carbon nanotubes,” Journal of Vacuum Science & Technology B, vol. 28, no. 6, pp. 1187–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. L. T. Sun, J. L. Gong, Z. Y. Zhu et al., “Nanocrystalline diamond from carbon nanotubes,” Applied Physics Letters, vol. 84, no. 15, pp. 2901–2903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Yang, S. Yang, C. Xiao, and A. Hirose, “Transformation of carbon nanotubes to diamond in microwave hydrogen plasma,” Materials Letters, vol. 61, no. 11-12, pp. 2208–2211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics Reports, vol. 409, no. 2, pp. 47–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, “Defect characterization in graphene and carbon nanotubes using Raman spectroscopy,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1932, pp. 5355–5377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. C. O’brien, R. L. Kubicek, and J. J. O’brien, “Laser raman spectroscopy of diamond,” Journal of Chemical Education, vol. 71, no. 9, pp. 759–760, 1994.
  33. G. Zhang, P. Qi, X. Wang et al., “Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 128, no. 18, pp. 6026–6027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Zhang, J. Liu, R. Sager, L. Dai, and J. Baur, “Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties,” Composites Science and Technology, vol. 69, no. 5, pp. 594–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. F. De Riccardis, D. Carbone, T. D. Makris, R. Giorgi, N. Lisi, and E. Salernitano, “Anchorage of carbon nanotubes grown on carbon fibres,” Carbon, vol. 44, no. 4, pp. 671–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. I. T. Barney, Fabrication and Testing of Hierarchical Carbon Nanostructures For Multifunctional Applications, Wright State University, 2012.