About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 357069, 6 pages
http://dx.doi.org/10.1155/2013/357069
Research Article

A Simple Approach for the Synthesis of Gold Nanoparticles Mediated by Layered Double Hydroxide

1Instituto de Química, Universidade Federal do Rio de Janeiro, CT Bloco A, Lab 641, Rio de Janeiro, RJ 21941-909, Brazil
2Instituto de Química, Universidade Federal do Rio de Janeiro, Macaé, RJ 27930-560, Brazil
3Instituto Alberto Luiz Coimbra de Pós Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, CT Bloco F, Rio de Janeiro, RJ 21949-900, Brazil

Received 11 June 2013; Accepted 30 August 2013

Academic Editor: Marinella Striccoli

Copyright © 2013 Aires da Conceição Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Xue, K. Palaniappan, G. Arumugam, S. A. Hackney, J. Liu, and H. Liu, “Sonogashira reactions catalyzed by water-soluble, β-cyclodextrin-capped palladium nanoparticles,” Catalysis Letters, vol. 116, no. 3-4, pp. 94–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Feng, L. Guo, Z. Shen et al., “Synthesis of short palladium nanoparticle chains and their application in catalysis,” Solid State Sciences, vol. 10, no. 10, pp. 1327–1332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. S. Huang, Y. H. Wang, J. Y. Jiang, and Z. L. Jin, “PEG-stabilized palladium nanoparticles: an efficient and recyclable catalyst for the selective hydrogenation of 1,5-cyclooctadiene in thermoregulated PEG biphase system,” Chinese Chemical Letters, vol. 19, no. 1, pp. 102–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. C. Ranu, R. Dey, and K. Chattopadhyay, “A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions,” Tetrahedron Letters, vol. 49, no. 21, pp. 3430–3432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S.-W. Kim, J. Park, Y. Jang et al., “Synthesis of monodisperse palladium nanoparticles,” Nano Letters, vol. 3, no. 9, pp. 1289–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Moreno-Mañas and R. Pleixats, “Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles,” Accounts of Chemical Research, vol. 36, no. 8, pp. 638–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-C. Wang, D.-H. Chen, and T.-C. Huang, “Synthesis of palladium nanoparticles in water-in-oil microemulsions,” Colloids and Surfaces A, vol. 189, no. 1–3, pp. 145–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Bai, Q. Yang, M. Li, S. Wang, C. Zhang, and Y. Li, “Preparation of composite nanofibers containing gold nanoparticles by using poly(N-vinylpyrrolidone) and β- cyclodextrin,” Materials Chemistry and Physics, vol. 111, no. 2-3, pp. 205–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Han, P. Ghosh, M. De, and V. M. Rotello, “Drug and gene delivery using gold nanoparticles,” Nanobiotechnology, vol. 3, no. 1, pp. 40–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Park, H. Youn, H. Kim et al., “Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug,” Journal of Materials Chemistry, vol. 19, no. 16, pp. 2310–2315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Kumar, H. Ma, X. Zhang et al., “Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment,” Biomaterials, vol. 33, no. 4, pp. 1180–1189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 346–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wang, L. Zheng, C. Peng et al., “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials, vol. 32, no. 11, pp. 2979–2988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. P. Xu, J. Zhang, M. O. Adebajo, H. Zhang, and C. Zhou, “Catalytic applications of layered double hydroxides and derivatives,” Applied Clay Science, vol. 53, no. 2, pp. 139–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Mora, C. Jiménez-Sanchidrián, and J. R. Ruiz, “Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts,” Journal of Colloid and Interface Science, vol. 302, no. 2, pp. 568–575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Francová, N. Tanchoux, C. Gérardin et al., “Hydrogenation of 2-butyne-1,4-diol on supported Pd catalysts obtained from LDH precursors,” Microporous and Mesoporous Materials, vol. 99, no. 1-2, pp. 118–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Jiménez-Sanchidrián, M. Mora, and J. R. Ruiz, “Suzuki cross-coupling reaction over a palladium-pyridine complex immobilized on hydrotalcite,” Catalysis Communications, vol. 7, no. 12, pp. 1025–1028, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Hetterley, R. Mackey, J. T. A. Jones, Y. Z. Khimyak, A. M. Fogg, and I. V. Kozhevnikov, “One-step conversion of acetone to methyl isobutyl ketone over Pd-mixed oxide catalysts prepared from novel layered double hydroxides,” Journal of Catalysis, vol. 258, no. 1, pp. 250–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Liu, X. Jiang, and G. Zhuo, “Heck reaction catalyzed by colloids of delaminated Pd-containing layered double hydroxide,” Journal of Molecular Catalysis A, vol. 290, no. 1-2, pp. 72–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Liu, J. Alvarez, W. Ong, E. Román, and A. E. Kaifer, “Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions,” Journal of the American Chemical Society, vol. 123, no. 45, pp. 11148–11154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Liu, K. B. Male, P. Bouvrette, and J. H. T. Luong, “Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins,” Chemistry of Materials, vol. 15, no. 22, pp. 4172–4180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Rodríquez-Llamazares, P. Jara, N. Yutronic, M. Noyong, J. Bretschneider, and U. Simon, “Face preferred deposition of gold nanoparticles on α-cyclodextrin/octanethiol inclusion compound,” Journal of Colloid and Interface Science, vol. 316, no. 1, pp. 202–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wang, D. Zhang, M. Tang, S. Xu, and M. Li, “Electrocatalysis of gold nanoparticles/layered double hydroxides nanocomposites toward methanol electro-oxidation in alkaline medium,” Electrochimica Acta, vol. 55, no. 12, pp. 4045–4049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Streszewski, W. Jaworski, K. Pacławski, E. Csapó, I. Dékány, and K. Fitzner, “Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfate-Kinetic studies,” Colloids and Surfaces A, vol. 397, pp. 63–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Jin, D. He, Z. Li, and M. Wei, “Protein adsorption on gold nanoparticles supported by a layered double hydroxide,” Materials Letters, vol. 77, pp. 67–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wang, X. Meng, and F. Xiao, “Au nanoparticles supported on a layered double hydroxide with excellent catalytic properties for the aerobic oxidation of alcohols,” Chinese Journal of Catalysis, vol. 31, no. 8, pp. 943–947, 2010. View at Scopus
  27. V. Belova, H. Möhwald, and D. G. Shchukin, “Sonochemical intercalation of preformed gold nanoparticles into multilayered clays,” Langmuir, vol. 24, no. 17, pp. 9747–9753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. K. Dumbre, P. N. Yadav, S. K. Bhargava, and V. R. Choudhary, “Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acids over gold nano-particles supported on MgO (or CaO) and other metal oxides,” Journal of Catalysis, vol. 301, pp. 134–140, 2013. View at Publisher · View at Google Scholar
  29. L. Wang, H. Xing, S. Zhang et al., “A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery,” Biomaterials, vol. 34, no. 13, pp. 3390–3401, 2013.
  30. A. Kumar, B. Mazinder Boruah, and X.-J. Liang, “Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS,” Journal of Nanomaterials, vol. 2011, Article ID 202187, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus