About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 365947, 7 pages
http://dx.doi.org/10.1155/2013/365947
Research Article

Fabrication of Self-Standing Silver Nanoplate Arrays by Seed-Decorated Electrochemical Route and Their Structure-Induced Properties

1Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2Center of Medical Physics and Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Received 3 September 2012; Accepted 12 December 2012

Academic Editor: Bingqiang Cao

Copyright © 2013 Guangqiang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology, vol. 14, no. 12, pp. R63–R73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. N. R. Jana, L. Gearheart, S. O. Obare, and C. J. Murphy, “Anisotropic chemical reactivity of gold spheroids and nanorods,” Langmuir, vol. 18, no. 3, pp. 922–927, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M. P. Pileni, “Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects,” The Journal of Physical Chemistry B, vol. 108, no. 35, pp. 13242–13248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. N. I. Kovtyukhova and T. E. Mallouk, “Nanowires as building blocks for self-assembling logic and memory circuits,” Chemistry, vol. 8, pp. 4354–4363, 2002.
  6. A. Tao, P. Sinsermsuksakul, and P. D. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angewandte Chemie—International Edition, vol. 45, no. 28, pp. 4597–4601, 2006.
  7. S. Habouti, M. Mátéfi-Tempfli, C.-H. Solterbeck, M. Es-Souni, S. Mátéfi-Tempfli, and M. M Es-Souni, “On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties,” Nano Today, vol. 6, no. 1, pp. 12–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Xia and L. Jiang, “Bio-inspired, smart, multiscale interfacial materials,” Advanced Materials, vol. 20, no. 15, pp. 2482–2858, 2008.
  9. S. K. Yang, W. P. Cai, G. Q. Liu, and H. B. Zeng, “From nanoparticles to nanoplates: preferential oriented connection of Ag colloids during electrophoretic deposition,” The Journal of Physical Chemistry C, vol. 113, no. 18, pp. 7692–7696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. K. Yang, W. P. Cai, L. C. Kong, and Y. Lei, “Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties,” Advanced Functional Materials, vol. 20, no. 15, pp. 2527–2533, 2010.
  11. J. F. Li, Y. F. Huang, Y. Ding et al., “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature, vol. 464, no. 7287, pp. 392–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Tao, F. Kim, C. Hess et al., “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Letters, vol. 3, no. 9, pp. 1229–1233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z. Y. Li, and Y. J. Xia, “Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties,” Journal of the American Chemical Society, vol. 127, no. 48, pp. 17118–17127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Yan, M. B. Wabuyele, G. D. Griffin, A. A. Vass, and T. Vo-Dinh, “Surface-enhanced Raman scattering detection of chemical and biological agent simulants,” IEEE Sensors Journal, vol. 5, no. 4, pp. 665–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Stuart, K. B. Biggs, and R. P. van Duyne, “Surface-enhanced Raman spectroscopy of half-mustard agent,” Analyst, vol. 131, no. 4, pp. 568–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. T. Duan, W. P. Cai, Y. Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering,” Applied Physics Letters, vol. 89, no. 18, Article ID 181918, 3 pages, 2006. View at Publisher · View at Google Scholar
  17. G. T. Duan, W. P. Cai, Y. Y. Luo, Y. Li, and Y. Lei, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Applied Physics Letters, vol. 89, no. 21, Article ID 211905, 3 pages, 2006. View at Publisher · View at Google Scholar
  18. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” The Journal of Physical Chemistry B, vol. 107, no. 37, pp. 9964–9972, 2003. View at Scopus
  20. S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” Journal of Photochemistry and Photobiology C, vol. 8, no. 1, pp. 18–29, 2007.
  21. X. Yao, Y. L. Song, and L. Jiang, “Applications of bio-inspired special wettable surfaces,” Advanced Materials, vol. 23, no. 6, pp. 719–734, 2011.
  22. K. S. Liu, X. Yao, and L. Jiang, “Recent developments in bio-inspired special wettability,” Chemical Society Reviews, vol. 39, pp. 3240–3255, 2010.
  23. N. J. Shirtcliffe, G. McHale, S. Atherton, and M. I. Newton, “An introduction to superhydrophobicity,” Advances in Colloid and Interface Science, vol. 161, no. 1-2, pp. 124–138, 2010.
  24. Z. Guo, W. Liu, and B.-L. Su, “Superhydrophobic surfaces: from natural to biomimetic to functional,” Journal of Colloid and Interface Science, vol. 353, no. 2, pp. 335–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Li, C. C. Li, S. O. Cho, G. T. Duan, and W. P. Cai, “Silver hierarchical bowl-like array: synthesis, superhydrophobicity, and optical properties,” Langmuir, vol. 23, no. 19, pp. 9802–9807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Li, W. P. Cai, B. Q. Cao et al., “Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity,” Nanotechnology, vol. 17, no. 1, pp. 238–243, 2006.
  27. Y. Li, W. P. Cai, B. Q. Cao et al., “Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method,” Journal of Colloid and Interface Science, vol. 287, no. 2, pp. 634–639, 2005.
  28. V. Gupta and N. Miura, “Electrochemically deposited polyaniline nanowire's network a high-performance electrode material for redox supercapacitor,” Electrochemical and Solid-State Letters, vol. 8, no. 12, pp. A630–A632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. L. Sun, L. Feng, X. F. Gao, and L. Jiang, “Bioinspired surfaces with special wettability,” Accounts of Chemical Research, vol. 38, no. 8, pp. 644–652, 2005.
  30. X. yao, Q. W. Chen, L. Xu et al., “Bioinspired ribbed nanoneedles with robust superhydrophobicity,” Advanced Functional Materials, vol. 20, no. 4, pp. 656–662, 2010.
  31. F. Shi, Y. Y. Song, J. Niu, X. H. Xia, Z. Q. Wang, and X. Zhang, “Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction,” Chemistry of Materials, vol. 18, no. 5, pp. 1365–1368, 2006.
  32. F. Shi, Z. Q. Wang, and X. Zhang, “Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders,” Advanced Materials, vol. 17, no. 8, pp. 1005–1009, 2005.
  33. Y. Li, X. J. Huang, S. H. Heo et al., “Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays,” Langmuir, vol. 23, no. 4, pp. 2169–2174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Li, E. J. Lee, and S. O. Cho, “Superhydrophobic coatings on curved surfaces featuring remarkable supporting force,” The Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14813–14817, 2007.
  35. Z. A. Hu, Y. X. Wang, Y. L. Xie, Y. Y. Yang, Z. Y. Zhang, and H. Y. Wu, “Ag nanowires and its application as electrode materials in electrochemical capacitor,” Journal of Applied Electrochemistry, vol. 40, no. 2, pp. 341–344, 2010.
  36. G. Liu, W. Cai, L. Kong, G. Duan, and F. Lü, “Vertically cross-linking silver nanoplate arrays with controllable density based on seed-assisted electrochemical growth and their structurally enhanced SERS activity,” Journal of Materials Chemistry, vol. 20, no. 4, pp. 767–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Transactions of the Faraday Society, vol. 40, pp. 546–551, 1944. View at Scopus
  38. H. H. Wang, C. Y. Liu, S. B. Wu et al., “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Advanced Materials, vol. 18, pp. 491–495, 2006.
  39. S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” Journal of the American Chemical Society, vol. 128, no. 7, pp. 2200–2201, 2006. View at Publisher · View at Google Scholar · View at Scopus