About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 367510, 8 pages
http://dx.doi.org/10.1155/2013/367510
Research Article

Preparation of Smooth Surface TiO2 Photoanode for High Energy Conversion Efficiency in Dye-Sensitized Solar Cells

1Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
2Department of Chemistry, National Central University, Chung-Li 32001, Taiwan

Received 14 December 2012; Accepted 2 April 2013

Academic Editor: Wen Zeng

Copyright © 2013 Sasipriya Kathirvel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  2. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Nelson and R. E. Chandler, “Random walk models of charge transfer and transport in dye sensitized systems,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1181–1194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011.
  6. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 3–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. E. Hardin, H. J. Snaith, and M. D. McGehee, “The renaissance of dye-sensitized solar cells,” Nature Photonics, vol. 6, no. 3, pp. 162–169, 2012.
  8. Y.-D. Zhang, X.-M. Huang, D.-M. Li, Y.-H. Luo, and Q.-B. Meng, “How to improve the performance of dye-sensitized solar cell modules by light collection,” Solar Energy Materials and Solar Cells, vol. 98, pp. 417–423, 2012.
  9. T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, and J. T. Hupp, “Advancing beyond current generation dye-sensitized solar cells,” Energy and Environmental Science, vol. 1, no. 1, pp. 66–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. van de Lagemaat, N. G. Park, and A. J. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques,” Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2044–2052, 2000. View at Scopus
  11. L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown, A. Di Carlo, and A. Reale, “Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: study and experimentation of TiCl4 treatment,” Journal of Non-Crystalline Solids, vol. 356, no. 37–40, pp. 1958–1961, 2010.
  12. A. B. F. Martinson, J. W. Elam, J. Liu, M. J. Pellin, T. J. Marks, and J. T. Hupp, “Radial electron collection in dye-sensitized solar cells,” Nano Letters, vol. 8, no. 9, pp. 2862–2866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Opara Krašovec, M. Berginc, M. Hočevar, and M. Topič, “Unique TiO2 paste for high efficiency dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 3, pp. 379–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng, and J. F. Chen, “Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films,” Electrochimica Acta, vol. 55, no. 7, pp. 2280–2285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Zhang and G. Cao, “Nanostructured photoelectrodes for dye-sensitized solar cells,” Nano Today, vol. 6, no. 1, pp. 91–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Duan, N. Fu, Q. Liu et al., “Sn-doped TiO2 photoanode for dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 116, no. 16, pp. 8888–8893, 2012.
  17. I. C. Baek, M. Vithal, J. A. Chang et al., “Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell,” Electrochemistry Communications, vol. 11, no. 4, pp. 909–912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Liu, X. Wang, Z. Chen, H. M. Cheng, and G. Q. Lu, “The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2,” Journal of Colloid and Interface Science, vol. 329, no. 2, pp. 331–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Lv, D. Zheng, M. Ye et al., “Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells,” Nanoscale, vol. 4, no. 19, pp. 5872–5879, 2012.
  20. Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1381–1389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, and P. Biswas, “Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties,” Nanoscale Research Letters, vol. 6, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-Y. Liao, J.-W. He, H. Xu, D.-B. Kuang, and C.-Y. Su, “Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres,” Journal of Materials Chemistry, vol. 22, no. 16, pp. 7910–7918, 2012.
  23. D.-W. Park, Y.-K. Choi, K.-J. Hwang et al., “Nanocrystalline TiO2 films treated with acid and base catalysts for dye-sensitized solar cells,” Advanced Powder Technology, vol. 22, no. 6, pp. 771–776, 2011.
  24. S. Ito, K. Takahashi, S. I. Yusa, T. Imamura, and K. Tanimoto, “Effects of homogenization scheme of TiO2 screen-printing paste for dye-sensitized solar cells,” International Journal of Photoenergy, vol. 2012, Article ID 405642, 7 pages, 2012. View at Publisher · View at Google Scholar
  25. K.-M. Lee, V. Suryanarayanan, and K.-C. Ho, “The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 90, no. 15, pp. 2398–2404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. K. Dhungel and J. G. Park, “Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells,” Renewable Energy, vol. 35, no. 12, pp. 2776–2780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. C. Jeong, O. K. Farha, and J. T. Hupp, “A convenient route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells,” Langmuir, vol. 27, no. 5, pp. 1996–1999, 2011. View at Publisher · View at Google Scholar · View at Scopus