About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 372058, 7 pages
http://dx.doi.org/10.1155/2013/372058
Research Article

A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

Department of Chemistry and Chemical Engineering, Binzhou University, 391, 5th Huanghe Street, Shandong, Binzhou 256603, China

Received 15 March 2013; Revised 7 June 2013; Accepted 20 June 2013

Academic Editor: Jun Li

Copyright © 2013 Haibo Yao and Guojun Han. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, “Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM),” Langmuir, vol. 12, no. 13, pp. 3173–3179, 1996. View at Scopus
  2. F. Caruso, A. S. Susha, M. Giersig, and H. Möhwald, “Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres,” Advanced Materials, vol. 11, no. 11, pp. 950–953, 1999.
  3. M. Ocana, W. P. Hsu, and E. Matijevic, “Preparation and properties of uniform-coated colloidal particles. 6: titania on zinc oxide,” Langmuir, vol. 7, no. 12, pp. 2911–2916, 1991. View at Publisher · View at Google Scholar
  4. A. Imhof and D. J. Pine, “Ordered macroporous materials by emulsion templating,” Nature, vol. 389, no. 6654, pp. 948–951, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science, vol. 281, no. 5376, pp. 538–540, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Caruso, R. A. Caruso, and H. Möhwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science, vol. 282, no. 5391, pp. 1111–1114, 1998. View at Publisher · View at Google Scholar
  7. K. Y. Chen and Y. W. Chen, “Synthesis of spherical titanium dioxide particles by homogeneous precipitation in acetone solution,” Journal of Sol-Gel Science and Technology, vol. 27, no. 2, pp. 111–117, 2003. View at Publisher · View at Google Scholar
  8. A. Imhof, “Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,” Langmuir, vol. 17, no. 12, pp. 3579–3585, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker, “Aerosol-assisted self-assembly of mesostructured spherical nanoparticles,” Nature, vol. 398, no. 6724, pp. 223–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Schacht, Q. Huo, I. G. Voigt-Martin, G. D. Stucky, and F. Schüth, “Oil-water interface templating of mesoporous macroscale structures,” Science, vol. 273, no. 5276, pp. 768–771, 1996. View at Scopus
  11. J. Hotz and W. Meier, “Vesicle-templated polymer hollow spheres,” Langmuir, vol. 14, no. 5, pp. 1031–1036, 1998. View at Scopus
  12. B. M. Discher, Y. Y. Won, D. S. Ege et al., “Polymersomes: tough vesicles made from diblock copolymers,” Science, vol. 284, no. 5417, pp. 1143–1146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. T. von Werne and T. E. Patten, “Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces,” Journal of the American Chemical Society, vol. 123, no. 31, pp. 7497–7505, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Caruso, A. Susha, and F. Caruso, “Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres,” Chemistry of Materials, vol. 13, no. 2, pp. 400–409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Caruso, X. Y. Shi, R. A. Caruso, and A. Susha, “Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles,” Advanced Materials, vol. 13, no. 10, pp. 740–744, 2001.
  16. M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals,” Langmuir, vol. 17, no. 3, pp. 903–907, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. K. P. Velikov and A. van Blaaderen, “Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica,” Langmuir, vol. 17, no. 16, pp. 4779–4786, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Ihara, S. Kubota, A. Uchimura et al., “A facile preparation method for self-assembled monolayers with silica particles on polystyrene-based microspheres,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Rogach, A. Susha, F. Caruso et al., “Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-µm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells,” Advanced Materials, vol. 12, no. 5, pp. 333–337, 2000.
  20. O. Kalinina and E. Kumacheva, “Polymeric nanocomposite material with a periodic structure,” Chemistry of Materials, vol. 13, no. 1, pp. 35–38, 2001. View at Publisher · View at Google Scholar
  21. X. L. Xu and S. A. Asher, “Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals,” Journal of the American Chemical Society, vol. 126, no. 25, pp. 7940–7945, 2004. View at Publisher · View at Google Scholar
  22. J. X. Wang, L. X. Wen, Z. H. Wang, and J. F. Chen, “Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects,” Materials Chemistry and Physics, vol. 96, no. 1, pp. 90–97, 2006. View at Publisher · View at Google Scholar
  23. M. Z. Xu, W. Z. Li, M. X. Du et al., “A facile method to fabricate a series of micrometer scale hollow silica spheres,” Materials Letters, vol. 64, no. 8, pp. 931–934, 2010. View at Publisher · View at Google Scholar
  24. M. Z. Xu, M. X. Du, L. M. Zhao et al., “Facile preparation of monodisperse micrometer-sized hollow silica spheres with tunable size and commendable surface topography,” Materials Research Bulletin, vol. 45, no. 9, pp. 1056–1063, 2010. View at Publisher · View at Google Scholar
  25. X. Cheng, M. Chen, L. Wu, and G. Gu, “Novel and facile method for the preparation of monodispersed titania hollow spheres,” Langmuir, vol. 22, no. 8, pp. 3858–3863, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Yin, L. He, Z. Gao, L. Gao, and B. Wang, “Facile method for fabricating titania spheres for chromatographic packing,” Materials Letters, vol. 63, no. 26, pp. 2191–2193, 2009. View at Publisher · View at Google Scholar · View at Scopus