About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 378752, 7 pages
http://dx.doi.org/10.1155/2013/378752
Research Article

Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

Department of Electrical and Electronic Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

Received 6 March 2013; Accepted 14 June 2013

Academic Editor: Renzhi Ma

Copyright © 2013 Yoshiyuki Show et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, “Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 1, pp. 92–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, “Electrical properties of carbon nanotube bundles for future via interconnects,” Japanese Journal of Applied Physics, vol. 44, no. 4, pp. 1626–1628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. J. Garcia, B. L. Wardle, and A. John Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Composites A, vol. 39, no. 6, pp. 1065–1070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. X. Chen, F. Li, G. Han et al., “Tribological behavior of carbon-nanotube-filled PTFE composites,” Tribology Letters, vol. 15, pp. 275–278, 2003. View at Publisher · View at Google Scholar
  5. D. L. Burris, B. Boesl, G. R. Bourne, and W. G. Sawyer, “Polymeric nanocomposites for tribological applications,” Macromolecular Materials and Engineering, vol. 292, no. 4, pp. 387–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Rungraeng, Y.-C. Cho, S. H. Yoon, and S. Jun, “Carbon nanotube-polytetrafluoroethylene nanocomposite coating for milk fouling reduction in plate heat exchanger,” Journal of Food Engineering, vol. 111, no. 2, pp. 218–224, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Pozio, R. F. Silva, M. De Francesco, and L. Giorgi, “Nafion degradation in PEFCs from end plate iron contamination,” Electrochimica Acta, vol. 48, no. 11, pp. 1543–1549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Tawfik, Y. Hung, and D. Mahajan, “Metal bipolar plates for PEM fuel cell-a review,” Journal of Power Sources, vol. 163, no. 2, pp. 755–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Show and H. Itabashi, “Electrically conductive material made from CNT and PTFE,” Diamond and Related Materials, vol. 17, no. 4-5, pp. 602–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Show and K. Takahashi, “Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membrane fuel cell (PEMFC),” Journal of Power Sources, vol. 190, no. 2, pp. 322–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Takahashi, K. Tunoda, H. Yajima, and T. Ishii, “Dispersion and purification of single-wall carbon nanotubes using carboxymethylcellulose,” Japanese Journal of Applied Physics, vol. 43, no. 6A, p. 3636, 2004. View at Publisher · View at Google Scholar
  12. N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Applied Physics Letters, vol. 88, p. 93123, 2006. View at Publisher · View at Google Scholar
  13. M. N. Nadagouda and R. S. Varma, “Noble metal decoration and alignment of carbon nanotubes in carboxymethyl cellulose,” Macromolecular Rapid Communications, vol. 29, no. 2, pp. 155–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kirkpatrick, “Percolation and conduction,” Reviews of Modern Physics, vol. 45, pp. 574–588, 1973. View at Publisher · View at Google Scholar
  15. J. P. Owejan, T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, “Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell,” International Journal of Hydrogen Energy, vol. 32, no. 17, pp. 4489–4502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Show, “Electrically conductive amorphous carbon coating on metal bipolar plates for PEFC,” Surface and Coatings Technology, vol. 202, pp. 1252–1255, 2007. View at Publisher · View at Google Scholar
  17. Y. Show, M. Miki, and T. Nakamura, “Increased in output power from fuel cell used metal bipolar plate coated with a-C film,” Diamond and Related Materials, vol. 16, no. 4–7, pp. 1159–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Fukutsuka, T. Yamaguchi, S.-I. Miyano, Y. Matsuo, Y. Sugie, and Z. Ogumi, “Carbon-coated stainless steel as PEFC bipolar plate material,” Journal of Power Sources, vol. 174, no. 1, pp. 199–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Feng, X. Cai, H. Sun, Z. Li, and P. K. Chu, “Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells,” Diamond and Related Materials, vol. 19, no. 11, pp. 1354–1361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-B. Lee, C.-H. Lee, and D.-S. Lim, “The electrical and corrosion properties of carbon nanotube coated 304 stainless steel/polymer composite as PEM fuel cell bipolar plates,” International Journal of Hydrogen Energy, vol. 34, no. 24, pp. 9781–9787, 2009. View at Publisher · View at Google Scholar · View at Scopus