About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 380165, 6 pages
http://dx.doi.org/10.1155/2013/380165
Research Article

Nanolayered Diamond Sintered Compact Obtained by Direct Conversion from Highly Oriented Graphite under High Pressure and High Temperature

1Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama Ehime 790-8577, Japan
2Electronics & Materials R&D Laboratories, Sumitomo Electric Industries, LTD., 1-1-1, Koya-kita, Itami, Hyogo 664-0016, Japan

Received 25 January 2013; Revised 19 March 2013; Accepted 19 March 2013

Academic Editor: Jun Liu

Copyright © 2013 Futoshi Isobe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya, “Materials: ultrahard polycrystalline diamond from graphite,” Nature, vol. 421, no. 6923, pp. 599–600, 2003. View at Scopus
  2. H. Sumiya and T. Irifune, “Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion,” Diamond and Related Materials, vol. 13, no. 10, pp. 1771–1776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Sumiya and K. Harano, “Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT,” Diamond and Related Materials, vol. 24, pp. 44–48, 2012.
  4. Y. Nakamoto, M. Sakata, H. Sumiya et al., “High-pressure generation using nano-polycrystalline diamonds as anvil materials,” Review of Scientific Instruments, vol. 82, no. 6, Article ID 066104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kunimoto and T. Irifune, “Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with no-polycrystalline diamond anvils,” Journal of Physics, vol. 215, no. 1, Article ID 012190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Ohfuji, T. Okada, T. Yagi, H. Sumiya, and T. Irifune, “Application of nano-polycrystalline diamond to laser-heated diamond anvil cell experiments,” High Pressure Research, vol. 30, no. 1, pp. 142–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, and T. Inoue, “Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure,” Journal of Materials Science, vol. 39, no. 2, pp. 445–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ohfuji, S. Okimoto, T. Kunimoto et al., “Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion,” Physics and Chemistry of Minerals, vol. 39, pp. 543–552, 2012.
  9. H. Ohfuji and K. Kuroki, “Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure,” Journal of Mineralogical and Petrological Sciences, vol. 104, no. 5, pp. 307–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Guillou, F. Brunet, T. Irifune, H. Ohfuji, and J. N. Rouzaud, “Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations,” Carbon, vol. 45, no. 3, pp. 636–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Sumiya, H. Yusa, T. Inoue, H. Ofuji, and T. Irifune, “Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature,” High Pressure Research, vol. 26, no. 2, pp. 63–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Isobe, T. Irifune, T. Shinmei, S. Suga, N. Nishiyama, and H. Sumiya, “Lowering P, T boundary for synthesis of pure nano-polycrystalline diamond,” Journal of Physics, vol. 215, no. 1, Article ID 012136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, and K. I. Funakoshi, “Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature,” Physics of the Earth and Planetary Interiors, vol. 143-144, no. 1-2, pp. 593–600, 2004. View at Scopus
  14. H. Sumiya, K. Harano, K. Arimoto, H. Kagi, S. Odake, and T. Irifune, “Optical characteristics of nano-polycrystalline diamond synthesized directly from graphite under high pressure and high temperature,” Japanese Journal of Applied Physics, vol. 48, no. 12, Article ID 120206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. P. Bundy and J. S. Kasper, “Hexagonal diamond—a new form of carbon,” The Journal of Chemical Physics, vol. 46, no. 9, pp. 3437–3446, 1967. View at Scopus
  16. S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, “Pressure-induced transformation path of graphite to diamond,” Physical Review Letters, vol. 74, no. 20, pp. 4015–4018, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yip, “The strongest size,” Nature, vol. 391, no. 6667, pp. 532–533, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. E. M. Wilks and J. Wilks, “The resistance of diamond to abrasion,” Journal of Physics D, vol. 5, no. 10, pp. 1902–1919, 1972. View at Publisher · View at Google Scholar · View at Scopus
  19. B. S. El-Dasher, J. J. Gray, J. W. Tringe et al., “Crystallographic anisotropy of wear on a polycrystalline diamond surface,” Applied Physics Letters, vol. 88, no. 24, Article ID 241915, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus