About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 381519, 9 pages
http://dx.doi.org/10.1155/2013/381519
Research Article

A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nanowires

1Department of Physics, Faculty of Chemistry and Technology, University of Split, Teslina 10, 21000 Split, Croatia
2Division of Materials Physics, Division of Laser and Atomic R&D, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
3SAXS Beamline, Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14-km 163, 5 in AREA Science Park, 34149 Basovizza, Italy

Received 3 August 2012; Revised 24 December 2012; Accepted 21 January 2013

Academic Editor: Claude Estournès

Copyright © 2013 M. Lučić Lavčević et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Levine, J. B. Cohen, Y. W. Chung, and P. Georgopoulos, “Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth,” Journal of Applied Crystallography, vol. 22, pp. 528–532, 1989. View at Publisher · View at Google Scholar
  2. M. Lučić Lavčević, P. Dubček, A. Turković, Z. Crnjak-Orel, and S. Bernstorff, “Nanostructural depth profile of vanadium/cerium oxide film as a host for lithium ions,” Solar Energy Materials and Solar Cells, vol. 91, no. 7, pp. 616–620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lučić Lavčević, A. Turković, P. Dubček, Z. Crnjak Orel, B. Orel, and S. Bernstorff, “GISAXS view of induced morphological changes in nanostructured CeVO4 thin films,” Journal of Nanomaterials, vol. 2011, Article ID 303808, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Wu and D. Xue, “Progress of science and technology of ZnO as advanced material,” Science of Advanced Materials, vol. 3, no. 2, pp. 127–149, 2011. View at Publisher · View at Google Scholar
  5. U. Özgür, Y. I. Alivov, C. Liu et al., “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, no. 4, Article ID 041301, pp. 1–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Singh, P. Thiyagarajan, K. Mohan Kant et al., “Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano,” Journal of Physics D, vol. 40, no. 20, pp. 6312–6327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Fortunato, A. Gonçalves, A. Pimentel et al., “Zinc oxide, a multifunctional material: from material to device applications,” Applied Physics A, vol. 96, no. 1, pp. 197–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Janotti and C. G. Van De Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, vol. 72, no. 12, Article ID 126501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. L. Wang, “Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology,” ACS NANO, vol. 2, no. 10, pp. 1987–1992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine,” Journal of Sol-Gel Science and Technology, vol. 39, no. 1, pp. 49–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” Journal of Materials Chemistry, vol. 12, no. 12, pp. 3773–3778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kawano, J. Yahiro, H. Maki, and H. Imai, “Epitaxial growth of wurtzite ZnO crystals in an aqueous solution system,” Chemistry Letters, vol. 35, no. 4, pp. 442–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Amenitsch, S. Bernstorff, and P. Laggner, “High-flux beamline for small-angle X-ray scattering at ELETTRA,” Review of Scientific Instruments, vol. 66, no. 2, pp. 1624–1626, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Dubček, “Nanostructure as seen by the SAXS,” Vacuum, vol. 80, no. 1–3, pp. 92–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, New York, NY, USA, 2001.
  16. A. Guinier, “La diffraction des rayons X aux tres petits angles; application á l'etude de phenomenes ultramicroscopiques,” Annals of Physics, vol. 12, pp. 161–237, 1939.