About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 383867, 7 pages
http://dx.doi.org/10.1155/2013/383867
Research Article

Nucleation and Growth Mechanism of Si Amorphous Film Deposited by PIAD

1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3Energy Materials Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China

Received 3 October 2012; Revised 28 December 2012; Accepted 4 January 2013

Academic Editor: Masayuki Nogami

Copyright © 2013 D. Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. Liu, Z. R. Huang, J. H. Wu, et al., “Surface morphology evolution and properties of silicon coating on silicon carbide ceramics by advanced plasma source ion plating,” Surface and Coatings Technology, vol. 207, pp. 204–210, 2012.
  2. M. A. Ealey and J. A. Wellman, “Polishability of CERAFORM: silicon carbide,” in Advanced Materials for Optical and Precision Structures, vol. 2857 of Proceedings of SPIE, pp. 78–85, 1996. View at Publisher · View at Google Scholar
  3. L. Rich and D. A. Crowe, “Polishing process for concave lightweight silicon-coated silicon carbide optics,” in Silicon Carbide Materials for Optics and Precision Structures, vol. 2543 of Proceedings of SPIE, pp. 236–247, July 1995. View at Scopus
  4. A. Wohllebe, R. Carius, L. Houben et al., “Crystallization of amorphous Si films for thin film solar cells,” Journal of Non-Crystalline Solids, vol. 227–230, no. 2, pp. 925–929, 1998. View at Scopus
  5. M. Li, Y. Liu, Y. Lin, et al., “Study on amorphous silicon thin film by aluminum-induced crystallization,” Physics Procedia, vol. 18, pp. 77–80, 2011.
  6. Y. Zhou, B. Zhou, J. Gu, M. Zhu, and F. Liu, “Comparison of growth mechanisms of silicon thin films prepared by HWCVD with PECVD,” Thin Solid Films, vol. 516, no. 5, pp. 564–567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Grischke, K. Bewilogua, K. Trojan, and H. Dimigen, “Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings,” Surface and Coatings Technology, vol. 74-75, no. 2, pp. 739–745, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. C. K. Chung and B. H. Wu, “Effect of amorphous Si layer on the reaction of carbon and silicon in the C/Si multilayer by high vacuum annealing,” Thin Solid Films, vol. 515, no. 4, pp. 1985–1991, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. L. Liu, Surface finish, coating and optical properties of SiC materials [Ph.D. thesis], Shanghai Institute of Ceramics, CAS, 2009.
  10. W. Y. Si Lei and L. Guojun, “Deposition techniques for optical tlfin films,” Journal of ChangChun University of Science and Technology, vol. 27, p. 4, 2005.
  11. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Applied Optics, vol. 22, no. 1, pp. 178–184, 1983. View at Scopus
  12. J. D. Targove and H. A. Macleod, “Verification of momentum-transfer as the dominant densifying mechanism in ion-assisted deposition,” Applied Optics, vol. 27, pp. 3779–3781, 1988.
  13. J. Harhausen, I. Meyenburg, A. Ohl, and R. Foest, “Characterization of the plasma plume of a PIAD plasma source by means of optical emission spectroscopy,” Surface and Coatings Technology, vol. 205, no. 2, pp. S407–S410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Zöller, R. Götzelmann, K. Matl, and D. Gushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Applied Optics, vol. 35, no. 28, pp. 5609–5612, 1996. View at Scopus
  15. R. Polini, P. D'Antonio, and E. Traversa, “Diamond nucleation from the gas phase onto cold-worked Co-cemented tungsten carbide,” Diamond and Related Materials, vol. 12, no. 3-7, pp. 340–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Whitfield, J. A. Savage, and R. B. Jackman, “Nucleation and growth of diamond films on single crystal and polycrystalline tungsten substrates,” Diamond and Related Materials, vol. 9, no. 3-6, pp. 262–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Balaji, A. Claudel, V. Fellmann, et al., “Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy,” Journal of Alloys and Compounds, vol. 526, pp. 103–109, 2012.
  18. Y. L. Geng, D. Xu, X. Q. Wang, D. Y. Pan, G. H. Zhang, and G. W. Yu, “Investigation of nucleation growth mechanism of MMTC crystal by AFM,” Journal of Crystal Growth, vol. 280, no. 1-2, pp. 266–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. K. L. Chopra, Thin Film Phenomena, Chapter 4, McGraw-Hill, New York, NY, USA, 1969.
  20. S. K. Mishra, P. K. P. Rupa, and L. C. Pathak, “Nucleation and growth of DC magnetron sputtered titanium diboride thin films,” Surface and Coatings Technology, vol. 200, no. 12-13, pp. 4078–4081, 2006. View at Publisher · View at Google Scholar · View at Scopus