About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 389634, 6 pages
http://dx.doi.org/10.1155/2013/389634
Research Article

Synthesis and Surface Characterization of -Mn Nanostructures

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Received 29 December 2012; Accepted 19 April 2013

Academic Editor: Yunpeng Yin

Copyright © 2013 Chengxiang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. H. Feng, L. M. Zhai, W. F. Tan, F. Liu, and J. Z. He, “Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals,” Environmental Pollution, vol. 147, no. 2, pp. 366–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. K. Ghavami, Z. Rafiei, and S. M. Tabatabaei, “Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries,” Journal of Power Sources, vol. 164, no. 2, pp. 934–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Abbas and S. A. Nasser, “Hydroxyl as a defect of the manganese dioxide lattice and its applications to the dry cell battery,” Journal of Power Sources, vol. 58, no. 1, pp. 15–21, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. K. D. Kwon, K. Refson, and G. Sposito, “Zinc surface complexes on birnessite: a density functional theory study,” Geochimica et Cosmochimica Acta, vol. 73, no. 5, pp. 1273–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Tamura, N. Katayama, and R. Furuichi, “Modeling of ion-exchange reactions on metal oxides with the frumkin isotherm. 1. Acid-base and charge characteristics of MnO2, TiO2, Fe3O4 and AI2O3 surfaces and adsorption affinity of alkali metal ions,” Environmental Science and Technology, vol. 30, no. 4, pp. 1198–1204, 1996. View at Scopus
  6. A. P. Malloy and S. W. Donne, “Porosity changes during reduction of γ-MnO2 for aqueous alkaline applications,” Journal of the Electrochemical Society, vol. 155, no. 11, pp. A817–A824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Malloy, G. J. Browning, and S. W. Donne, “Surface characterization of heat-treated electrolytic manganese dioxide,” Journal of Colloid and Interface Science, vol. 285, no. 2, pp. 653–664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Pan, Y. Qin, X. Li, T. Hu, Z. Wu, and Y. Xie, “EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces: I. Irreversible adsorption of zinc onto manganite (γ-MnOOH),” Journal of Colloid and Interface Science, vol. 271, no. 1, pp. 28–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Li, G. Pan, Y. Qin, T. Hu, Z. Wu, and Y. Xie, “EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces: II. Reversible adsorption of zinc on δ-MnO2,” Journal of Colloid and Interface Science, vol. 271, no. 1, pp. 35–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Zhao, X. Yang, H. Zhang, C. Chen, and X. Wang, “Effect of environmental conditions on Pb(II) adsorption on β-MnO2,” Chemical Engineering Journal, vol. 164, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Jouanneau, S. Sarciaux, A. L. La Salle, and D. Guyomard, “Influence of structural defects on the insertion behavior of γ-MnO2: comparison of H+ and Li+,” Solid State Ionics, vol. 140, no. 3-4, pp. 223–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Chabre and J. Parmetier, “Structural and electrochemical properties of the proton/γ-MnO2 system,” Progress in Solid State Chemistry, vol. 23, pp. l–130, 1995.
  13. N. Kijima, H. Yasuda, T. Sato, and Y. Yoshimura, “Preparation and characterization of open tunnel oxide α-MnO2 precipitated by ozone oxidation,” Journal of Solid State Chemistry, vol. 159, no. 1, pp. 94–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. N. DeGuzman, Y. F. Shen, E. J. Neth et al., “Synthesis and characterization of Octahedral Molecular Sieves (OMS-2) having the hollandite structure,” Chemistry of Materials, vol. 6, no. 6, pp. 815–821, 1994. View at Scopus
  15. Y. Tanaka, M. Tsuji, and Y. Tamaura, “ESCA and thermodynamic studies of alkali metal ion exchange reactions on an α-MnO2 phase with the tunnel structure,” Physical Chemistry Chemical Physics, vol. 2, no. 7, pp. 1473–1479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan, and B. Wei, “Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures,” Journal of Physical Chemistry B, vol. 109, no. 43, pp. 20207–20214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Le, S. Chin, E. Park, L. T. Linh, G. N. Bae, and J. Jurng, “Chemical vapor synthesis and characterization of manganese oxides,” Chemical Vapor Deposition, vol. 17, pp. 228–234, 2011.
  18. T. Hiemstra, W. H. van Riemsdijk, and G. H. Bolt, “Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I. Model description and evaluation of intrinsic reaction constants,” Journal of Colloid And Interface Science, vol. 133, no. 1, pp. 91–104, 1989. View at Scopus
  19. T. Hiemstra, J. C. M. de Wit, and W. H. van Riemsdijk, “Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. II. Application to various important (hydr)oxides,” Journal of Colloid and Interface Science, vol. 133, no. 1, pp. 105–117, 1989. View at Scopus