About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 391832, 6 pages
http://dx.doi.org/10.1155/2013/391832
Research Article

Axial Vascularization of Nano-HA/Collagen/PLA Composites by Arteriovenous Bundle

1Department of Orthopaedic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Hutong, Beijing 100730, China
2Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China

Received 4 June 2013; Accepted 28 June 2013

Academic Editor: Xiaoming Li

Copyright © 2013 Hai Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Beier, A. Hess, J. Loew et al., “De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model,” European Surgical Research, vol. 46, no. 3, pp. 148–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Beier, R. E. Horch, A. Hess et al., “Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model,” Journal of Tissue Engineering and Regenerative Medicine, vol. 4, no. 3, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. J. Aho, T. Ekfors, P. B. Dean, H. T. Aro, A. Ahonen, and V. Nikkanen, “Incorporation and clinical results of large allografts of the extremities and pelvis,” Clinical Orthopaedics and Related Research, no. 307, pp. 200–213, 1994. View at Scopus
  4. X. M. Li, Y. Yang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Biocomposites reinforced by fibers or tubes, as scaffolds for tissue engineering or regenerative medicine,” Journal of Biomedical Materials Research Part A, 2013. View at Publisher · View at Google Scholar
  5. X. M. Li, L. Wang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research Part A, vol. 101, no. 8, pp. 2424–2435, 2013. View at Publisher · View at Google Scholar
  6. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. L.-L. Ren, D.-Y. Ma, X. Feng, T.-Q. Mao, Y.-P. Liu, and Y. Ding, “A novel strategy for prefabrication of large and axially vascularized tissue engineered bone by using an arteriovenous loop,” Medical Hypotheses, vol. 71, no. 5, pp. 737–740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yu, P. J. VandeVord, L. Mao, H. W. Matthew, P. H. Wooley, and S.-Y. Yang, “Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization,” Biomaterials, vol. 30, no. 4, pp. 508–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. O. P. Hofer, K. M. Knight, J. J. Cooper-White et al., “Increasing the volume of vascularized tissue formation in engineered constructs: an experimental study in rats,” Plastic and Reconstructive Surgery, vol. 111, no. 3, pp. 1186–1192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kokemueller, S. Spalthoff, M. Nolff et al., “Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application,” International Journal of Oral and Maxillofacial Surgery, vol. 39, no. 4, pp. 379–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Kneser, E. Polykandriotis, J. Ohnolz et al., “Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop,” Tissue Engineering, vol. 12, no. 7, pp. 1721–1731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Liao, F. Z. Cui, W. Zhang, and Q. L. Feng, “Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite,” Journal of Biomedical Materials Research Part B, vol. 69, no. 2, pp. 158–165, 2004. View at Scopus
  13. C. Du, F. Z. Cui, W. Zhang, Q. L. Feng, X. D. Zhu, and K. de Groot, “Formation of calcium phosphate/collagen composites through mineralization of collagen matrix,” Journal of Biomedical Material Research, vol. 50, no. 4, pp. 518–527, 2000.
  14. C. Du, F. Z. Cui, X. D. Zhu, and K. de Groot, “Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture,” Journal of Biomedical Material Research, vol. 44, no. 4, pp. 407–415, 1999.
  15. J. Li, J. Hong, Q. Zheng et al., “Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2,” Journal of Orthopaedic Research, vol. 29, no. 11, pp. 1745–1752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Kanczler and R. O. C. Oreffo, “Osteogenesis and angiogenesis: the potential for engineering bone,” European Cells and Materials, vol. 15, pp. 100–114, 2008. View at Scopus
  17. A. Arkudas, J. P. Beier, K. Heidner et al., “Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts,” Tissue Engineering, vol. 13, no. 7, pp. 1549–1560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Kneser, D. J. Schaefer, E. Polykandriotis, and R. E. Horch, “Tissue engineering of bone: the reconstructive surgeon's point of view,” Journal of Cellular and Molecular Medicine, vol. 10, no. 1, pp. 7–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Jain, P. Au, J. Tam, D. G. Duda, and D. Fukumura, “Engineering vascularized tissue,” Nature Biotechnology, vol. 23, no. 7, pp. 821–823, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney, “Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration,” Journal of Bone and Mineral Research, vol. 20, no. 5, pp. 848–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Hou, F. Chen, Y. Yang et al., “Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model,” Journal of Biomedical Materials Research Part A, vol. 80, no. 1, pp. 85–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Kneser, A. Voogd, J. Ohnolz et al., “Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute,” Cells Tissues Organs, vol. 179, no. 4, pp. 158–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. Beier, U. Kneser, J. Stern-Sträter, G. B. Stark, and A. D. Bach, “Y chromosome detection of three-dimensional tissue-engineered skeletal muscle constructs in a syngeneic rat animal model,” Cell Transplantation, vol. 13, no. 1, pp. 45–53, 2004. View at Scopus
  24. U. Kneser, P. M. Kaufmann, H. C. Fiegel, and X. Rogiers, “Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices,” Journal of Biomedical Material Research, vol. 47, no. 4, pp. 494–503, 1999.
  25. P. Warnke, I. Springer, P. J. Wiltfang et al., “Growth and transplantation of a custom vascularised bone graft in a man,” The Lancet, vol. 364, no. 9436, pp. 766–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Tanaka, K.-C. Sung, A. Tsutsumi, S. Ohba, K. Ueda, and W. A. Morrison, “Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?” Plastic and Reconstructive Surgery, vol. 112, no. 6, pp. 1636–1644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Pribaz, N. Fine, and D. P. Orgill, “Flap prefabrication in the head and neck: a 10-year experience,” Plastic and Reconstructive Surgery, vol. 103, no. 3, pp. 808–820, 1999. View at Scopus
  28. F. Timmermans, J. Plum, M. C. Yöder, D. A. Ingram, B. Vandekerckhove, and J. Case, “Endothelial progenitor cells: identity defined?” Journal of Cellular and Molecular Medicine, vol. 13, no. 1, pp. 87–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Li, H. Gao, M. Uo et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research Part A, vol. 91, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus