About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 398357, 9 pages
http://dx.doi.org/10.1155/2013/398357
Research Article

Synthesis and Characterisation of Calcium Carbonate Aragonite Nanocrystals from Cockle Shell Powder (Anadara granosa)

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia

Received 24 November 2012; Accepted 24 March 2013

Academic Editor: Yun Zhao

Copyright © 2013 Abdullahi Shafiu Kamba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Xu, Y. Ma, and H. Colfen, “Biomimetic mineralization,” Journal of Material Chemistry, vol. 17, pp. 415–449, 2006.
  2. Y. Fukui and K. Fujimoto, “Bioinspired nanoreactor based on miniemulsion system to create organic-inorganic hybrid nanoparticle and nanofilm,” Journal of Material Chemistry, vol. 22, no. 8, pp. 3493–3499, 2012.
  3. Q. L. Feng, G. Pu, Y. Pei, F. Z. Cui, H. D. Li, and T. N. Kim, “Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell,” Journal of Crystal Growth, vol. 216, no. 1, pp. 459–465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Velázquez-Castillo, V. Reyes-Gasga, D. I. García-Gutierrez, and M. Jose-Yacaman, “Nanoscale characterization of nautilus shell structure: an example of natural self-assembly,” Journal of Materials Research, vol. 21, no. 6, pp. 1484–1489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Mohamed, S. Yusup, and S. Maitra, “Decomposition study of calcium carbonate in cockle shells,” Journal of Engineering Science and Technology, vol. 7, no. 1, pp. 1–10, 2012.
  6. A. J. Awang-Hazmi, A. B. Z. Zuki, M. M. Nordin, A. Jalila, and Y. Norimah, “Mineral composition of the cockle (Anadara Granosa) shells of west coast of peninsular Malaysia and its potential as biomaterial for use in bone repair,” Journal of Animal and Veterinary Advances, vol. 6, no. 5, pp. 591–594, 2007.
  7. Y. Guowei., L. Wang, and H. Jianhua, “The crystallization behavior of calcium carbonate in ethanol/water solution containing mixed nonionic/anionic surfactants,” Powder Technology, vol. 192, no. 1, pp. 58–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Gupter, Synthesis of Precipitated Calcium Carbonate Nanoparticles Using Modified Emulsion Membranes [M.S. thesis], Georgia Institute of Technology, Atlanta, Ga, USA, 2004.
  9. G. X. Wu, J. Ding, and J. M. Xue, “Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions,” Journal of Materials Research, vol. 23, no. 1, pp. 140–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. A. Hassan, V. K. Rangari, V. Fallon, Y. Farooq, and S. Jeelani, “Mechanochemical and sonochemical synthesis of bio-based nanoparticles,” in Proceedings of the Nanotechnology Conference, pp. 278–281, June 2010. View at Scopus
  11. A. Georgieva, B. Georgieva, Z. Bogdanov, and D. K. Stefanov, “Microemulsion water-in-oil (W/O)—microreactor for synthesis of ultrafine carbonate nanostructures,” University of Ruse Union of Scientists-Ruse, vol. 50, no. 9, pp. 34–38, 2011.
  12. R. Babou-Kammoe, S. Hamoudi, F. Larachi, and K. Belkacemi, “Synthesis of calcium carbonate nanoparticles by controlled precipation of saturated carbonated and calcium Nitrate aqueous solution,” The Canadian Journal of Chemical Engineering, vol. 90, pp. 26–33, 2012.
  13. Y. H. Cho, S. Kim, E. K. Bae, C. K. Mok, and J. Park, “Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures,” Journal of Food Science, vol. 73, no. 3, pp. E115–E121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Talegaonkar, A. Azeem, F. J. Ahmad, R. K. Khar, S. A. Pathan, and Z. I. Khan, “Microemulsions: a novel approach to enhanced drug delivery,” Recent Patents on Drug Delivery and Formulation, vol. 2, no. 3, pp. 238–257, 2008. View at Scopus
  15. K. C. Song and J. H. Kim, “Synthesis of high surface area tin oxide powders via water-in-oil microemulsions,” Powder Technology, vol. 107, no. 3, pp. 268–272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Karagiozov and D. Momchilova, “Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles,” Chemical Engineering and Processing, vol. 44, no. 1, pp. 115–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. GEA_Niro_Soavi, “Laboratory Manual for Higher pressure Homogenizer,” 2011, http://www.nirosoavi.com/index.asp.
  18. N. Islam, Z. B. A. Bakar, M. M. Noordin, M. Z. B. Hussain, N. S. B. A. Rahman, and E. Ali, “Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa),” Powder Technology, vol. 213, no. 1–3, pp. 188–191, 2011.
  19. K. Mitri, R. Shegokar, S. Gohla, C. Anselmi, and R. H. Müller, “Lutein nanocrystal as antioxidant formulation for oral and dermal delivery,” International Journal of Pharmaceutics, vol. 420, pp. 141–146, 2011.
  20. R. Shegokar and R. H. Müller, “Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives,” International Journal of Pharmaceutics, vol. 399, no. 1-2, pp. 129–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Cheng, M. Lei, J. Yu, and X. Zhao, “Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction,” Materials Letters, vol. 58, no. 10, pp. 1565–1570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Dong, Y. Chu, L. Dong, and Z. Yu-jiang, “Controllable synthesis of CaCO3 micro/nanocrystals with different morphologies in microemulsion,” Chemical Journal of Chinese Universities, vol. 26, no. 5, pp. 678–682, 2010.
  23. A. Szcześ, “Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion,” Journal of Crystal Growth, vol. 311, no. 4, pp. 1129–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Tang, B. Du, L. Li, J. Yang, and Y. Zhang, “Effects of Tx-100-SDS on crystal growth of calcium carbonate in reverse microemulsion solution,” Chinese Science Bulletin, vol. 52, no. 1, pp. 78–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Wang, Y. X. Moo, C. Chen, P. Gunawan, and R. Xu, “Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres,” Journal of Colloid and Interface Science, vol. 352, no. 2, pp. 393–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Linga Raju, K. V. Narasimhulu, N. O. Gopal, J. L. Rao, and B. C. V. Reddy, “Electron paramagnetic resonance, optical and infrared spectral studies on the marine mussel Arca burnesi shells,” Journal of Molecular Structure, vol. 608, no. 2-3, pp. 201–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Cheng, W. Cai, and J. Yu, “DNA-mediated morphosynthesis of calcium carbonate particles,” Journal of Colloid and Interface Science, vol. 352, no. 1, pp. 43–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Vongsavat, P. Winotai, and S. Meejoo, “Phase transitions of natural corals monitored by ESR spectroscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 243, no. 1, pp. 167–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Hu, Y. Ma, Y. Zhou, F. Nie, X. Duan, and C. Pei, “Hen eggwhite-mediated stack crystallization of calcium carbonate,” Journal of Crystal Growth, vol. 312, no. 6, pp. 831–836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Korash, “Mechanical properties of a Nanostructure Poly (KAMPS)/Aragonite composite,” in Mechanic of Biological System and Materials. Volume 2, Conference proceedings of the society for expiremental mechanic series, pp. 131–136, 2011.
  31. Powder Diffraction File-4 Releas, International Centre for Diffraction Data (ICDD), Newton square, Pa, USA, 2012.
  32. J. Yu, H. Guo, S. A. Davis, and S. Mann, “Fabrication of hollow inorganic microspheres by chemically induced self-transformation,” Advanced Functional Materials, vol. 16, no. 15, pp. 2035–2041, 2006. View at Publisher · View at Google Scholar · View at Scopus