About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 407372, 14 pages
http://dx.doi.org/10.1155/2013/407372
Research Article

Self-Assembly of Ternary Particles for Tough Colloidal Crystals with Vivid Structure Colors

1Engineering Department of Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou 311300, China
2Department of Materials Science, Fudan University, Shanghai 20043, China

Received 4 May 2013; Accepted 3 June 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 Binfu Bao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Zhao, Y. Cao, F. Ito et al., “Colloidal crystal beads as supports for biomolecular screening,” Angewandte Chemie, vol. 45, no. 41, pp. 6835–6838, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir, vol. 19, no. 23, pp. 9653–9660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Lawrence, Y. Ying, P. Jiang, and S. H. Foulger, “Dynamic tuning of organic lasers with colloidal crystals,” Advanced Materials, vol. 18, no. 3, pp. 300–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. O. D. Velev and A. M. Lenhoff, “Colloidal crystals as templates for porous materials,” Current Opinion in Colloid and Interface Science, vol. 5, no. 1-2, pp. 56–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Lawrence, G. H. Shim, P. Jiang, M. G. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials, vol. 17, no. 19, pp. 2344–2349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Takei and N. Shimizu, “Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres,” Langmuir, vol. 13, no. 7, pp. 1865–1868, 1997. View at Scopus
  7. J. Ge and Y. Yin, “Magnetically responsive colloidal photonic crystals,” Journal of Materials Chemistry, vol. 18, no. 42, pp. 5041–5045, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mitsuishi, J. Matsui, and T. Miyashita, “Photofunctional thin film devices composed of polymer nanosheet assemblies,” Journal of Materials Chemistry, vol. 19, no. 3, pp. 325–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Asher, V. L. Alexeev, A. V. Goponenko et al., “Photonic crystal carbohydrate sensors: low ionic strength sugar sensing,” Journal of the American Chemical Society, vol. 125, no. 11, pp. 3322–3329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhang, J. Wang, Y. Zhao et al., “Photonic crystal concentrator for efficient output of dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 18, no. 23, pp. 2650–2652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Advanced Materials, vol. 15, no. 11, pp. 892–896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature, vol. 389, no. 6653, pp. 829–832, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Li, F. He, Q. Liao et al., “Ultrasensitive DNA detection using photonic crystals,” Angewandte Chemie, vol. 120, no. 38, pp. 7368–7372, 2008. View at Publisher · View at Google Scholar
  14. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature, vol. 424, no. 6950, pp. 852–855, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Li, W. P. Cai, and G. T. Duan, “Ordered micro/nanostructured arrays based on the monolayer colloidal crystals,” Chemistry of Materials, vol. 20, no. 3, pp. 615–624, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals: status and prospects,” Angewandte Chemie, vol. 48, no. 34, pp. 6212–6233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, T. Sasaki, Y. Shimizu, and N. Koshizaki, “Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation,” Journal of the American Chemical Society, vol. 130, no. 44, pp. 14755–14762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Lu, Y. D. Yin, Z.-Y. Li, and Y. N. Xia, “Synthesis and self-assembly of Au@SiO2 core shell colloids,” Nano Letters, vol. 2, no. 7, pp. 785–788, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Mitsuishi, J. Matsui, and T. Miyashita, “Photofunctional thin film devices composed of polymer nanosheet assemblies,” Journal of Materials Chemistry, vol. 19, no. 3, pp. 325–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Advanced Materials, vol. 12, no. 10, pp. 693–713, 2000.
  21. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nature Photonics, vol. 1, no. 8, pp. 468–472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. L. Duan, B. You, S. X. Zhou, and L. M. Wu, “Self-assembly of polymer colloids and their solvatochromic-responsive properties,” Journal of Materials Chemistry, vol. 21, no. 3, pp. 687–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. H. Shen, Y. Zhu, L. M. Wu, B. You, and J. Zi, “Fabrication of robust crystal balls from the electrospray of soft polymer spheres/silica dispersion,” Langmuir, vol. 26, no. 9, pp. 6604–6609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. You, L. Shi, N. G. Wen, et al., “A facile method for fabrication of ordered porous polymer films,” Macromolecules, vol. 41, no. 18, pp. 6624–6626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chemical Reviews, vol. 110, no. 1, pp. 547–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. H. Shen, Y. Y. Yang, F. Z. Lu, B. F. Bao, and B. You, “Self-assembly of binary particles and application as structural colors,” Polymer Chemistry, vol. 3, no. 9, pp. 2495–2501, 2012. View at Publisher · View at Google Scholar
  27. X. H. Wang, T. Akahane, H. Orikasa, T. Kyotani, and Y. Y. Fu, “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films,” Applied Physics Letters, vol. 91, no. 1, Article ID 011908, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Optics Express, vol. 15, no. 15, pp. 9553–9561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zi, X. D. Yu, Y. Z. Li et al., “Coloration strategies in peacock feathers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12576–12578, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. H. Shen, L. Shi, B. You, L. M. Wu, and D. Y. Zhao, “Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties,” Journal of Materials Chemistry, vol. 22, no. 16, pp. 8069–8075, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Advanced Materials, vol. 19, no. 13, pp. 1689–1692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Computer Physics Communications, vol. 113, no. 1, pp. 49–77, 1998. View at Scopus
  33. G. Q. Liu, Z. S. Wang, and Y. H. Ji, “Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method,” Thin Solid Films, vol. 518, no. 18, pp. 5083–5090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Current Opinion in Colloid & Interface Science, vol. 6, no. 4, pp. 383–401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S.-L. Kuai, X.-F. Hu, A. Haché, and V.-V. Truong, “High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique,” Journal of Crystal Growth, vol. 267, no. 1-2, pp. 317–324, 2004. View at Publisher · View at Google Scholar · View at Scopus