About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 408475, 5 pages
http://dx.doi.org/10.1155/2013/408475
Research Article

Spin-Filtering Effects in Würtzite and Graphite-Like AlN Nanowires with Mn Impurities

Faculty of Physics, “Materials and Devices for Electronics and Optoelectronics” Research Center, University of Bucharest, P.O. Box MG-11, Ilfov 077125 Magurele, Romania

Received 14 December 2012; Accepted 28 February 2013

Academic Editor: Yun Zhao

Copyright © 2013 G. A. Nemnes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Chattopadhyay, C. S. Shih, H. L. Zon, F. C. Chia, K. H. Chen, and L. C. Chen, “Molecular sensing with ultrafine silver crystals on hexagonal aluminum nitride nanorod templates,” Journal of the American Chemical Society, vol. 127, no. 9, pp. 2820–2821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Zhou, J. Zhao, Y. Chen, P. von Ragu Schleyer, and Z. Chen, “Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors,” Nanotechnology, vol. 18, Article ID 424023, 2007. View at Google Scholar
  3. G. A. Nemnes, C. Visan, and S. Antohe, “Thermopower of atomicsized wurtzite AlN wires,” Physica E, vol. 44, p. 1092, 2012. View at Google Scholar
  4. C. Xu, L. Xue, C. Yin, and G. Wang, “Formation and photoluminescence properties of AlN nanowires,” Physica Status Solidi (A), vol. 198, no. 2, pp. 329–335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. Yazdi, M. Syvajarvi, and R. Yakimova, “Aligned AlN nanowires and microrods by self-patterning,” Applied Physics Letters, vol. 90, Article ID 123103, 2007. View at Google Scholar
  6. L. H. Shen, X. F. Li, J. Zhang et al., “Synthesis of single-crystalline wurtzite aluminum nitride nanowires by direct arc discharge,” Applied Physics A, vol. 84, pp. 73–75, 2006. View at Google Scholar
  7. R. K. Paul, K. H. Lee, B. T. Lee, and H. Y. Song, “Formation of AlN nanowires using Al powder,” Materials Chemistry and Physics, vol. 112, no. 2, pp. 562–565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yang, Q. Zhao, X. Z. Zhang et al., “Mn-doped AlN nanowires with room temperatureferromagnetic ordering,” Applied Physics Letters, vol. 90, Article ID 092118, 2007. View at Google Scholar
  9. L. H. Shen, X. F. Li, Y. M. Ma et al., “Pressure-induced structural transition in AlN nanowires,” Applied Physics Letters, vol. 89, Article ID 141903, 2006. View at Google Scholar
  10. Y. Wu, G. Chen, H. Ye, Y. Zhu, and S. H. Wei, “Origin of the phase transition of AlN, GaN, and ZnO nanowires,” Applied Physics Letters, vol. 94, Article ID 253101, 2009. View at Google Scholar
  11. T. L. Mitran, A. Nicolaev, G. A. Nemnes, L. Ion, and S. Antohe, “Ab initio vibrational and thermal properties of AlN nanowires under axial stress,” Computational Materials Science, vol. 50, no. 10, pp. 2955–2959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Li, H. Q. Bao, B. Song et al., “Ferromagnetic properties ofMn-doped AlN,” Physica B, vol. 403, pp. 4096–4099, 2008. View at Google Scholar
  13. Y. Zhang, H. Shi, R. Li, and P. Zhang, “Magnetic coupling properties of Mn-doped AlN nanowires: first-principles calculations,” Physics Letters A, vol. 375, no. 15, pp. 1686–1689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z.-K. Tang, L. Wang, L.-M. Tang et al., “Ferromagnetic coupling in Mg-doped passivated AlN nanowires: a firstprinciples study,” Physica Status Solidi B, vol. 249, pp. 185–189, 2012. View at Google Scholar
  15. J. M. Soler, E. Artacho, J. D. Gale et al., “The SIESTA method for ab initio order-N materials simulation,” Journal of Physics Condensed Matter, vol. 14, no. 11, pp. 2745–2779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport,” Physical Review B, vol. 65, Article ID 165401, 17 pages, 2002. View at Google Scholar
  17. G. A. Nemnes, “Spin current switching and spin-filtering effects in Mn-doped boron nitride nanoribbons,” Journal of Nanomaterials, vol. 2012, Article ID 748639, 5 pages, 2012. View at Google Scholar