About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 409087, 8 pages
http://dx.doi.org/10.1155/2013/409087
Research Article

Nanostructures and Self-Assembly of Organogels via Benzimidazole/Benzothiazole Imide Derivatives with Different Alkyl Substituent Chains

1College of Physics and Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
2Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
3State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Received 15 March 2013; Accepted 28 March 2013

Academic Editor: Xingbin Yan

Copyright © 2013 Xihai Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Xing, T. Sun, S. Li, A. Hao, J. Su, and Y. Hou, “An instant-formative heat-set organogel induced by small organic molecules at a high temperature,” Colloids and Surfaces A, vol. 421, pp. 44–50, 2013.
  2. F. Xin, H. Zhang, B. Hao et al., “Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate,” Colloids and Surfaces A, vol. 410, pp. 18–22, 2012.
  3. K. Iwanaga, T. Sumizawa, M. Miyazaki, and M. Kakemi, “Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds,” International Journal of Pharmaceutics, vol. 388, no. 1-2, pp. 123–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Löfman, J. Koivukorpi, V. Noponen, H. Salo, and E. Sievänen, “Bile acid alkylamide derivatives as low molecular weight organogelators: systematic gelation studies and qualitative structural analysis of the systems,” Journal of Colloid and Interface Science, vol. 360, no. 2, pp. 633–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Bastiat, F. Plourde, A. Motulsky et al., “Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer's disease,” Biomaterials, vol. 31, no. 23, pp. 6031–6038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Z.-G. Tao, X. Zhao, X.-K. Jiang, and Z.-T. Li, “A hexaazatriphenylene-based organogel that responds to silver(I) with high selectivity under aqueous condition,” Tetrahedron Letters, vol. 53, no. 14, pp. 1840–1842, 2012.
  7. X. Yu, Y. Li, Y. Yin, and D. Yu, “A simple and colorimetric fluoride receptor and its fluoride-responsive organogel,” Materials Science and Engineering C, vol. 32, no. 6, pp. 1695–1698, 2012.
  8. M. Takizawa, A. Kimoto, and J. Abe, “Photochromic organogel based on [2.2]paracyclophane-bridged imidazole dimer with tetrapodal urea moieties,” Dyes and Pigments, vol. 89, no. 3, pp. 254–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Xue, D. Gao, X. Chen, K. Liu, and Y. Fang, “New dimeric cholesteryl-based A(LS)2 gelators with remarkable gelling abilities: organogel formation at room temperature,” Journal of Colloid and Interface Science, vol. 361, no. 2, pp. 556–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Delbecq, K. Tsujimoto, Y. Ogue, H. Endo, and T. Kawai, “N-stearoyl amino acid derivatives: potent biomimetic hydro/organogelators as templates for preparation of gold nanoparticles,” Journal of Colloid and Interface Science, vol. 390, no. 1, pp. 17–24, 2013.
  11. X. Ren, W. Yu, Z. Zhang et al., “Gelation and fluorescent organogels of a complex of perylenetetracarboxylic tetraacid with cationic surfactants,” Colloids and Surfaces A, vol. 375, no. 1–3, pp. 156–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. He, J. Liu, K. Liu et al., “Preparation of novel organometallic derivatives of cholesterol and their gel-formation properties,” Colloids and Surfaces A, vol. 362, no. 1–3, pp. 127–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Zhao, Y. Li, T. Sun et al., “Heat-set supramolecular organogels composed of β-cyclodextrin and substituted aniline in N,N-dimethylformamide,” Colloids and Surfaces A, vol. 374, no. 1–3, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Svobodová, Nonappa, Z. Wimmer, and E. Kolehmainen, “Design, synthesis and stimuli responsive gelation of novel stigmasterol-amino acid conjugates,” Journal of Colloid and Interface Science, vol. 361, no. 2, pp. 587–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Huang, J. Ge, Z. Cai, Z. Hu, and X. Hong, “The correlation of microstructure morphology with gelation mechanism for sodium soaps in organic solvents,” Colloids and Surfaces A, vol. 414, pp. 88–97, 2012.
  16. M. Liu, A. Kira, and H. Nakahara, “Silver(I) ion induced monolayer formation of 2-substituted benzimidazoles at the air/water interface,” Langmuir, vol. 13, no. 18, pp. 4807–4809, 1997. View at Scopus
  17. M. Liu and J. Cai, “Silver(I) ion induced reverse U-shape monolayers of poly(methylenebis(benzimidazoles)) at the air/water interface,” Langmuir, vol. 16, no. 6, pp. 2899–2901, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Guo and M. Liu, “Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization,” Langmuir, vol. 21, no. 8, pp. 3410–3412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Jiao, Y. Wang, F. Gao, J. Zhou, and F. Gao, “Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups,” Progress in Natural Science, vol. 22, no. 1, pp. 64–70, 2012.
  20. T. Jiao, F. Gao, Y. Wang, J. Zhou, F. Gao, and X. Luo, “Supramolecular gel and nanostructures of bolaform and trigonal cholesteryl derivatives with different aromatic spacers,” Current Nanoscience, vol. 8, no. 1, pp. 111–116, 2012.
  21. H. Yang, T. Yi, Z. Zhou et al., “Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives,” Langmuir, vol. 23, no. 15, pp. 8224–8230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. R. Lupi, D. Gabriele, V. Greco, N. Baldino, L. Seta, and B. de Cindio, “A rheological characterisation of an olive oil/fatty alcohols organogel,” Food Research International, vol. 51, no. 2, pp. 510–517, 2013.
  23. C. Zhao, B. Bai, H. Wang et al., “Self-assemblies, helical ribbons and gelation tuned by solvent-gelator interaction in a bi-1,3,4-oxadiazole gelator,” Journal of Molecular Structure, vol. 1037, pp. 130–135, 2013.
  24. M. K. Nayak, “Functional organogel based on a hydroxyl naphthanilide derivative and aggregation induced enhanced fluorescence emission,” Journal of Photochemistry and Photobiology A, vol. 217, no. 1, pp. 40–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Atsbeha, L. Bussotti, S. Cicchi et al., “Photophysical characterization of low-molecular weight organogels for energy transfer and light harvesting,” Journal of Molecular Structure, vol. 993, no. 1–3, pp. 459–463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Zhu and J. S. Dordick, “Solvent effect on organogel formation by low molecular weight molecules,” Chemistry of Materials, vol. 18, no. 25, pp. 5988–5995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Wu, T. Yi, Q. Xia et al., “Tunable gel formation by both sonication and thermal processing in a cholesterol-based self-assembly system,” Chemistry, vol. 15, no. 25, pp. 6234–6243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Shimizu and M. Masuda, “Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles,” Journal of the American Chemical Society, vol. 119, no. 12, pp. 2812–2818, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kogiso, S. Ohnishi, K. Yase, M. Masuda, and T. Shimizu, “Dicarboxylic oligopeptide bolaamphiphiles: proton-triggered self-assembly of microtubes with loose solid surfaces,” Langmuir, vol. 14, no. 18, pp. 4978–4986, 1998. View at Scopus
  30. T. Wang, Y. Li, and M. Liu, “Gelation and self-assembly of glutamate bolaamphiphiles with hybrid linkers: effect of the aromatic ring and alkyl spacers,” Soft Matter, vol. 5, no. 5, pp. 1066–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Li, T. Wang, and M. Liu, “Ultrasound induced formation of organogel from a glutamic dendron,” Tetrahedron, vol. 63, no. 31, pp. 7468–7473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang, and D. Y. Nadargi, “Silica aerogel: synthesis and applications,” Journal of Nanomaterials, vol. 2010, Article ID 409310, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Suárez, A. Fernández, J. L. Menéndez, and R. Torrecillas, “Transparent yttrium aluminium garnet obtained by spark plasma sintering of lyophilized gels,” Journal of Nanomaterials, vol. 2009, Article ID 138490, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Al Dwayyan, M. Naziruddin Khan, and M. S. Al Salhi, “Optical characterization of chemically etched nanoporous silicon embedded in sol-gel matrix,” Journal of Nanomaterials, vol. 2012, Article ID 713203, 7 pages, 2012. View at Publisher · View at Google Scholar