About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 425726, 13 pages
http://dx.doi.org/10.1155/2013/425726
Research Article

Preparation and Characterization of Multifunctional Chitin/Lignin Materials

1Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Sklodowskiej-Curie 2, 60965 Poznan, Poland
2Institute of Experimental Physics, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, 09599 Freiberg, Germany

Received 16 July 2013; Revised 16 August 2013; Accepted 17 August 2013

Academic Editor: Yuan Zhang

Copyright © 2013 Łukasz Klapiszewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. L. Chum, Biomass (Organic Electrochemistry). An Introduction and Guide, H. Lund and H. M. Baizer, Eds., Marcel Dekker, New York, NY, USA, 1991.
  2. J. Ralph, K. Lundquist, G. Brunow et al., “Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids,” Phytochemistry Reviews, vol. 3, no. 1-2, pp. 29–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Collinson and W. Thielemans, “The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin,” Coordination Chemistry Reviews, vol. 254, no. 15-16, pp. 1854–1870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Micic, K. Radotic, M. Jeremic, D. Djikanovic, and S. B. Kämmer, “Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy,” Colloids and Surfaces B, vol. 34, no. 1, pp. 33–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Donaldson, “Lignification and lignin topochemistry—an ultrastructural view,” Phytochemistry, vol. 57, no. 6, pp. 859–873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Milczarek, “Preparation and characterization of a lignin modified electrode,” Electroanalysis, vol. 19, no. 13, pp. 1411–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Milczarek, “Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation,” Langmuir, vol. 25, no. 17, pp. 10345–10353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Milczarek, “Kraft lignin as dispersing agent for carbon nanotubes,” Journal of Electroanalytical Chemistry, vol. 638, no. 1, pp. 178–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Milczarek and T. Rebis, “Synthesis and electroanalytical performance of a composite material based on poly(3,4-ethylenedioxythiophene) doped with lignosulfonate,” International Journal of Electrochemistry, vol. 2012, Article ID 130980, 7 pages, 2012. View at Publisher · View at Google Scholar
  10. S. K. Srivastava, A. K. Singh, and A. Sharma, “Studies on the uptake of lead and zinc by lignin obtained from black liquor—a paper industry waste material,” Environmental Technology, vol. 15, no. 4, pp. 353–361, 1994. View at Scopus
  11. D. Mohan, C. U. Pittman Jr., and P. H. Steele, “Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent,” Journal of Colloid and Interface Science, vol. 297, no. 2, pp. 489–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Babel and T. A. Kurniawan, “Low-cost adsorbents for heavy metals uptake from contaminated water: a review,” Journal of Hazardous Materials, vol. 97, no. 1–3, pp. 219–243, 2003. View at Scopus
  13. T. Dizhbite, G. Zakis, A. Kizima et al., “Lignin—a useful bioresource for the production of sorption-active materials,” Bioresource Technology, vol. 67, no. 3, pp. 221–228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Kunanopparat, P. Menut, M.-H. Morel, and S. Guilbert, “Improving wheat gluten materials properties by Kraft lignin addition,” Journal of Applied Polymer Science, vol. 125, no. 2, pp. 1391–1399, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Morandim-Giannetti, J. A. M. Agnelli, B. Z. Lanças, R. Magnabosco, S. A. Casarin, and S. H. P. Bettini, “Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties,” Carbohydrate Polymers, vol. 87, no. 4, pp. 2563–2568, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. N. Sheikh and K. H. Prabhu, “Chitin and chitosan biopolymers of the 21 st century,” International Dyer, vol. 195, no. 7, pp. 20–25, 2010. View at Scopus
  17. F. Khoushab and M. Yamabhai, “Chitin research revisited,” Marine Drugs, vol. 8, no. 7, pp. 1988–2012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Wang, Y. Chang, L. Yu et al., “Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba),” Carbohydrate Polymers, vol. 92, no. 1, pp. 90–97, 2013. View at Publisher · View at Google Scholar
  19. S. Ifuku, M. Nogi, K. Abe et al., “Simple preparation method of chitin nanofibers with a uniform width of 10-20 nm from prawn shell under neutral conditions,” Carbohydrate Polymers, vol. 84, no. 2, pp. 762–764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Sajomsang and P. Gonil, “Preparation and characterization of α-chitin from cicada sloughs,” Materials Science and Engineering C, vol. 30, no. 3, pp. 357–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Brunner, P. Richthammer, H. Ehrlich et al., “Chitin-based organic networks: an integral part of cell wall biosilica in the diatom thalassiosira pseudonana,” Angewandte Chemie International Edition, vol. 48, no. 51, pp. 9724–9727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Ehrlich, M. Maldonado, K.-D. Spindler et al., “First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera),” Journal of Experimental Zoology B, vol. 308, no. 4, pp. 347–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Ehrlich, M. Krautter, T. Hanke et al., “First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera),” Journal of Experimental Zoology B, vol. 308, no. 4, pp. 473–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Brunner, H. Ehrlich, P. Schupp et al., “Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta,” Journal of Structural Biology, vol. 168, no. 3, pp. 539–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Rinaudo, “Chitin and chitosan: properties and applications,” Progress in Polymer Science, vol. 31, no. 7, pp. 603–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Marine Biotechnology, vol. 8, no. 3, pp. 203–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, and H. Tamura, “Biomaterials based on chitin and chitosan in wound dressing applications,” Biotechnology Advances, vol. 29, no. 3, pp. 322–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Jayakumar, K. P. Chennazhi, S. Srinivasan, S. V. Nair, T. Furuike, and H. Tamura, “Chitin scaffolds in tissue engineering,” International Journal of Molecular Sciences, vol. 12, no. 3, pp. 1876–1887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Jayakumar, A. Nair, N. S. Rejinold, S. Maya, and S. V. Nair, “Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells,” Carbohydrate Polymers, vol. 87, no. 3, pp. 2352–2356, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. K. T. Smitha, A. Anitha, T. Furuike, H. Tamura, S. V. Nair, and R. Jayakumar, “In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery,” Colloids and Surfaces B, vol. 104, pp. 245–253, 2013. View at Publisher · View at Google Scholar
  31. H. Ehrlich, E. Steck, M. Ilan et al., “Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: biomimetic potential and applications,” International Journal of Biological Macromolecules, vol. 47, no. 2, pp. 141–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. X. Pinto, S. R. Al-Abed, and D. J. Reisman, “Biosorption of heavy metals from mining influenced water onto chitin products,” Chemical Engineering Journal, vol. 166, no. 3, pp. 1002–1009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Tang, W. Zhou, and L. Zhang, “Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels,” Journal of Hazardous Materials, vol. 209-210, pp. 218–225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Kurita, “Controlled functionalization of the polysaccharide chitin,” Progress in Polymer Science, vol. 26, no. 9, pp. 1921–1971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. D. Kittle, C. Wang, C. Qian et al., “Ultrathin chitin films for nanocomposites and biosensors,” Biomacromolecules, vol. 13, no. 3, pp. 714–718, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Wang and B. Xing, “Importance of structural makeup of biopolymers for organic contaminant sorption,” Environmental Science and Technology, vol. 41, no. 10, pp. 3559–3565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. James, C. J. Adams, C. Bolm et al., “Mechanochemistry: opportunities for new and cleaner synthesis,” Chemical Society Reviews, vol. 41, no. 1, pp. 413–447, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Tejado, C. Peña, J. Labidi, J. M. Echeverria, and I. Mondragon, “Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis,” Bioresource Technology, vol. 98, no. 8, pp. 1655–1663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. G. Alriols, A. García, R. Llano-ponte, and J. Labidi, “Combined organosolv and ultrafiltration lignocellulosic biorefinery process,” Chemical Engineering Journal, vol. 157, no. 1, pp. 113–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Cárdenas, G. Cabrera, E. Taboada, and S. P. Miranda, “Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR,” Journal of Applied Polymer Science, vol. 93, no. 4, pp. 1876–1885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. R. L. Lavall, O. B. G. Assis, and S. P. Campana-Filho, “β-Chitin from the pens of Loligo sp.: extraction and characterization,” Bioresource Technology, vol. 98, no. 13, pp. 2465–2472, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M.-K. Jang, B.-G. Kong, Y.-I. Jeong, C. H. Lee, and J.-W. Nah, “Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources,” Journal of Polymer Science A, vol. 42, no. 14, pp. 3423–3432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. R. J. Krupadam, P. Sridevi, and S. Sakunthala, “Removal of endocrine disrupting chemicals from contaminated industrial groundwater using chitin as a biosorbent,” Journal of Chemical Technology and Biotechnology, vol. 86, no. 3, pp. 367–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Annadurai, M. Chellapandian, and M. R. V. Krishnan, “Adsorption of reactive dye on chitin,” Environmental Monitoring and Assessment, vol. 59, no. 1, pp. 111–119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Raymond, F. G. Morin, and R. H. Marchessault, “Degree of deacetylation of chitosan using conductometric titration and solid-state NMR,” Carbohydrate Research, vol. 246, pp. 331–336, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Li, J.-F. Revol, E. Naranjo, and R. H. Marchessault, “Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions,” International Journal of Biological Macromolecules, vol. 18, no. 3, pp. 177–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. W. Janusz and M. Matysek, “Coadsorption of Cd(II) and oxalate ions at the TiO2/electrolyte solution interface,” Journal of Colloid and Interface Science, vol. 296, no. 1, pp. 22–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Dong, A. L. Fricke, B. M. Moudgil, and H. Johnson, “Electrokinetic study of kraft lignin,” Tappi Journal, vol. 79, no. 7, pp. 191–197, 1996. View at Scopus
  49. Ł. Klapiszewski, M. Nowacka, G. Milczarek, and T. Jesionowski, “Physicochemical and electrokinetic properties of silica/lignin biocomposites,” Carbohydrate Polymers, vol. 94, no. 1, pp. 345–355, 2013. View at Publisher · View at Google Scholar
  50. H. Harmita, K. G. Karthikeyan, and X. Pan, “Copper and cadmium sorption onto kraft and organosolv lignins,” Bioresource Technology, vol. 100, no. 24, pp. 6183–6191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Stawski, S. Rabiej, L. Herczyńska, and Z. Draczyński, “Thermogravimetric analysis of chitins of different origin,” Journal of Thermal Analysis and Calorimetry, vol. 93, no. 2, pp. 489–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Rodríguez-Mirasol, T. Cordero, and J. J. Rodríguez, “CO2-reactivity of eucalyptus kraft lignin chars,” Carbon, vol. 31, no. 1, pp. 53–61, 1993. View at Scopus
  53. M. Kijima, T. Hirukawa, F. Hanawa, and T. Hata, “Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials,” Bioresource Technology, vol. 102, no. 10, pp. 6279–6285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Suhas, P. J. M. Carrott, and M. M. L. Ribeiro Carrott, “Lignin—from natural adsorbent to activated carbon: a review,” Bioresource Technology, vol. 98, no. 12, pp. 2301–2312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Telysheva, T. Dizhbite, L. Jashina et al., “Synthesis of lignin-based inorganic/organic hybrid materials favorable for detoxification of ecosystem components,” BioResources, vol. 4, no. 4, pp. 1276–1284, 2009. View at Scopus
  56. R. Saad and J. Hawari, “Grafting of lignin onto nanostructured silica SBA-15: preparation and characterization,” Journal of Porous Materials, vol. 20, pp. 227–233, 2013. View at Publisher · View at Google Scholar · View at Scopus