About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 426983, 11 pages
http://dx.doi.org/10.1155/2013/426983
Research Article

Synthesis of Polypyrrole Inverse Opal in [bmim] Containing Acetonitrile and the Application of the Inverse Opal in Cell Prototype

1Nano-Science and Technology Research Center, Shanghai University, Shanghai 200444, China
2College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China

Received 19 November 2012; Accepted 6 December 2012

Academic Editor: Yongfeng Luo

Copyright © 2013 Wei Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Pringle, J. Efthimiadis, P. C. Howlett et al., “Electrochemical synthesis of polypyrrole in ionic liquids,” Polymer, vol. 45, no. 5, pp. 1447–1453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Komaba, M. Seyama, T. Momma, and T. Osaka, “Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole,” Electrochimica Acta, vol. 42, no. 3, pp. 383–388, 1997. View at Scopus
  3. T. Welton, “Room-temperature ionic liquids. Solvents for synthesis and catalysis,” Chemical Reviews, vol. 99, no. 8, pp. 2071–2083, 1999. View at Scopus
  4. S. R. Yun, G. O. Kim, C. W. Lee, N. J. Jo, Y. Kang, and K. S. Ryu, “Synthesis and control of the shell thickness of polyaniline and polypyrrole half hollow spheres using the polystyrene cores,” Journal of Nanomaterials, vol. 2012, Article ID 894539, 9 pages, 2012. View at Publisher · View at Google Scholar
  5. M. Deepa and S. Ahmad, “Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: a comparison of morphology and electro-optical properties,” European Polymer Journal, vol. 44, no. 10, pp. 3288–3299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Sekiguchi, M. Atobe, and T. Fuchigami, “Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid,” Electrochemistry Communications, vol. 4, no. 11, pp. 881–885, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Zhang, J. Chen, D. Niu, G. G. Wallace, and J. Lu, “Electrochemical polymerization of pyrrole in BMIMPF6 ionic liquid and its electrochemical response to dopamine in the presence of ascorbic acid,” Synthetic Metals, vol. 159, no. 15-16, pp. 1542–1545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Lu, A. G. Fadeev, B. Qi et al., “Use of ionic liquids for π-conjugated polymer electrochemical devices,” Science, vol. 297, no. 5583, pp. 983–987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Cassagneau and F. Caruso, “Inverse opals for optical affinity biosensing,” Advanced Materials, vol. 14, no. 22, pp. 1629–1633, 2002.
  10. T. Cassagneau and F. Caruso, “Conjugated polymer inverse opals for potentiometric biosensing,” Advanced Materials, vol. 14, no. 24, pp. 1837–1841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang and F. Caruso, “Enzyme encapsulation in nanoporous silica spheres,” Chemical Communications, vol. 10, no. 13, pp. 1528–1529, 2004. View at Scopus
  12. Y. Wang and F. Caruso, “Macroporous zeolitic membrane bioreactors,” Advanced Functional Materials, vol. 14, no. 10, pp. 1012–1018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Qian, Z. Z. Gu, A. Fujishima, and O. Sato, “Three-dimensionally ordered macroporous polymer materials: an approach for biosensor applications,” Langmuir, vol. 18, no. 11, pp. 4526–4529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. P. V. Braun and P. Wiltzius, “Electrochemically grown photonic crystals,” Nature, vol. 402, no. 6762, pp. 603–604, 1999. View at Scopus
  15. P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, “Preparation of macroporous metal films from colloidal crystals,” Journal of the American Chemical Society, vol. 121, no. 34, pp. 7957–7958, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Xu, W. L. Zhou, C. Frommen et al., “Electrodeposited nickel and gold nanoscale metal meshes with potentially interesting photonic properties,” Chemical Communications, no. 12, pp. 997–998, 2000. View at Scopus
  17. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, “Electrochemical deposition of macroporous platinum, palladium and cobalt films using polystyrene latex sphere templates,” Chemical Communications, no. 17, pp. 1671–1672, 2000. View at Scopus
  18. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chemistry of Materials, vol. 14, no. 5, pp. 2199–2208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Chen, Y. Wang, J. Zhou, W. Yan, X. Li, and J. J. Zhu, “Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film,” Analytical Chemistry, vol. 80, no. 6, pp. 2133–2140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Cassagneau and F. Caruso, “Semiconducting polymer inverse opals prepared by electropolymerization,” Advanced Materials, vol. 14, no. 1, pp. 34–38, 2002.
  21. D. Wang and F. Caruso, “Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies,” Advanced Materials, vol. 13, no. 5, pp. 350–354, 2001.
  22. S. Tian, J. Wang, U. Jonas, and W. Knoll, “Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques,” Chemistry of Materials, vol. 17, no. 23, pp. 5726–5730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kubo, Z. Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” Journal of the American Chemical Society, vol. 124, no. 37, pp. 10950–10951, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Saheb, J. Janata, and M. Josowicz, “Reference electrode for ionic liquids,” Electroanalysis, vol. 18, no. 4, pp. 405–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Wong, V. Kitaev, and G. A. Ozin, “Colloidal crystal films: advances in universality and perfection,” Journal of the American Chemical Society, vol. 125, no. 50, pp. 15589–15598, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Zhou and X. S. Zhao, “Flow-controlled vertical deposition method for the fabrication of photonic crystals,” Langmuir, vol. 20, no. 4, pp. 1524–1526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Yoldi, C. Arcos, B. R. Paulke, R. Sirera, W. González-Viñas, and E. Görnitz, “On the parameters influencing the deposition of polystyrene colloidal crystals,” Materials Science and Engineering C, vol. 28, no. 7, pp. 1038–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Zhao, L. Tong, C. Li, Z. Gu, and G. Shi, “Polypyrrole actuators with inverse opal structures,” Journal of Materials Chemistry, vol. 19, no. 11, pp. 1653–1658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zhou and J. Heinze, “Electropolymerization of pyrrole and electrochemical study of polypyrrole. 3. Nature of "water effect" in acetonitrile,” Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8451–8457, 1999. View at Scopus
  31. M. Zhou and J. Heinze, “Electropolymerization of pyrrole and electrochemical study of polypyrrole. 2. influence of acidity on the formation of polypyrrole and the multipathway mechanism,” Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8443–8450, 1999. View at Scopus
  32. M. Zhou and J. Heinze, “Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole,” Electrochimica Acta, vol. 44, no. 11, pp. 1733–1748, 1999. View at Scopus
  33. M. Zhou, M. Pagels, B. Geschke, and J. Heinze, “Electropolymerization of pyrrole and electrochemical study of polypyrrole. 5. Controlled electrochemical synthesis and solid-state transition of well-defined polypyrrole variants,” Journal of Physical Chemistry B, vol. 106, no. 39, pp. 10065–10073, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Sowmiah, V. Srinivasadesikan, M. C. Tseng, and Y. H. Chu, “On the chemical stabilities of ionic liquids,” Molecules, vol. 14, no. 9, pp. 3780–3813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. L. Dai, M. H. Qiao, and J. F. Deng, “XPS studies on a novel amorphous Ni-Co-W-B alloy powder,” Applied Surface Science, vol. 120, no. 1-2, pp. 119–124, 1997.
  36. F. Beck and R. Michaelis, “Corrosion of synthetic metals,” Werkstoffe und Korrosion, vol. 42, no. 7, pp. 341–347, 1991. View at Scopus
  37. F. Beck, U. Barsch, and R. Michaelis, “Corrosion of conducting polymers in aqueous media,” Journal of Electroanalytical Chemistry, vol. 351, no. 1-2, pp. 169–184, 1993. View at Scopus