About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 437203, 7 pages
http://dx.doi.org/10.1155/2013/437203
Research Article

Layer-by-Layer Films from Wine: An Investigation of an Exponential Growth Process

Grupo de Materiais Nanoestruturados, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brazil

Received 17 January 2013; Accepted 5 March 2013

Academic Editor: Shuangxi Xing

Copyright © 2013 Marcio N. Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Liang, C. L. Owens, G. Y. Zhong, and L. Cheng, “Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm,” Food Chemistry, vol. 129, no. 3, pp. 940–950, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Liang, Y. Yang, L. Cheng, and G. -Y Zhong, “Polyphenolic composition and content in the ripe berries of wild Vitis species,” Food Chemistry, vol. 132, pp. 730–738, 2012. View at Publisher · View at Google Scholar
  3. A. Zoechling, F. Liebner, and A. Jungbauer, “Red wine: a source of potent ligands for peroxisome proliferator-activated receptor γ,” Food & Function, vol. 2, pp. 28–38, 2011. View at Publisher · View at Google Scholar
  4. J. M. Guilford and J. M. Pezzuto, “Wine and health: a review,” American Journal of Enology and Viticulture, vol. 62, pp. 471–486, 2011. View at Publisher · View at Google Scholar
  5. P. Gresele, C. Cerletti, G. Guglielmini, P. Pignatelli, G. de Gaetano, and F. Violi, “Effects of resveratrol and other wine polyphenols on vascular function: an update,” Journal of Nutritional Biochemistry, vol. 22, no. 3, pp. 201–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Das and D. K. Das, “Resveratrol and cardiovascular health,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 503–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Wang, K. Zhang, Q. Zhang, J. Mei, C. J. F. Z. Chen, and D. H. Yu, “Effects of quercetin on the apoptosis of the human gastric carcinoma cells,” Toxicology in Vitro, vol. 26, pp. 221–228, 2012. View at Publisher · View at Google Scholar
  8. A. R. Patel, C. P. Heussen, J. Hazekamp, E. Drost, and K. Velikov, “Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium,” Food Chemistry, vol. 133, pp. 423–429, 2012. View at Publisher · View at Google Scholar
  9. M. Thiruchenduran, N. A. Vijayan, J. K. Sawaminathan, and S. N. Devaraj, “Protective effect of grape seed proanthocyanidins against cholesterol cholic acid diet-induced hypercholesterolemia in rats,” Cardiovascular Pathology, vol. 20, pp. 361–368, 2011. View at Publisher · View at Google Scholar
  10. H. Xiang, Y. Xie, and J. Hang, “Study on the interaction of DNA with resveratrol by resonance light scattering technique and its analytical application,” Journal of Analytical Chemistry, vol. 66, pp. 618–622, 2011. View at Publisher · View at Google Scholar
  11. G. Wang, L. Wang, W. Tang, X. Hao, Y. Wang, and Y. Lu, “Binding of quercetin to lysozyme as probed by spectroscopic analysis and molecular simulation,” Journal of Fluorescence, vol. 21, pp. 1879–1886, 2011. View at Publisher · View at Google Scholar
  12. L. Yang, P. Li, Y. Gao, and D. Wu, “Qualitative observation of chemical change rate for quercetin in basic medium characterized by time resolved UV-vis spectroscopy,” Journal of Molecular Liquids, vol. 151, no. 2-3, pp. 134–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Gonzalez-Neves, G. Gil, G. Favre, and M. Ferrer, “Influence of grape composition and winemaking on the anthocyanin composition of red wines of Tannat,” International Journal of Food Science and Technology, vol. 47, pp. 900–909, 2012. View at Publisher · View at Google Scholar
  14. V. Ivanova, B. Vojnoski, and M. Stefova, “Effect of winemaking treatment and wine aging on phenolic content in Vranec wines,” Journal of Food Science and Technology, vol. 49, pp. 161–172, 2012. View at Publisher · View at Google Scholar
  15. S. Fragoso, L. Aceña, J. Guasch, M. Mestres, and O. Busto, “Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression,” Journal of Agricultural and Food Chemistry, vol. 59, pp. 10795–10802, 2011. View at Publisher · View at Google Scholar
  16. G. Gambacorta, D. Antonacci, S. Pati et al., “Influence of winemaking technologies on phenolic composition of Italian red wines,” European Food Research and Technology, vol. 233, pp. 1057–1066, 2011. View at Publisher · View at Google Scholar
  17. A. Baiano, C. Terracone, G. Gambacorta, and E. La Notte, “Phenolic content and antioxidant activity of primitivo wine: comparison among winemaking technologies,” Journal of Food Science, vol. 74, no. 3, pp. C258–C267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Cala, N. Pinaud, C. Simon et al., “NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects,” The FASEB Journal, vol. 24, no. 11, pp. 4281–4290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Pradelles, D. Chassagne, S. Vichi, R. Gougeon, and H. Alexandre, “(-)Geosmin sorption by enological yeasts in model wine and FTIR spectroscopy characterization of the sorbent,” Food Chemistry, vol. 120, no. 2, pp. 531–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Decher and J. B. Schlenoff, Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley-VCH, 2003.
  21. J. B. Brito, D. J. C. Gomes, V. D. Justina et al., “Nanostructured films from phthalocyanine and carbon nanotubes: surface morphology and electrical characterization,” Journal of Colloid and Interface Science, vol. 367, pp. 467–471, 2012. View at Publisher · View at Google Scholar
  22. D. L. Elbert, C. B. Herbert, and J. A. Hubbell, “Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces,” Langmuir, vol. 15, no. 16, pp. 5355–5362, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Picart, P. Lavalle, P. Hubert et al., “Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface,” Langmuir, vol. 17, no. 23, pp. 7414–7424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Picart, J. Mutterer, L. Richert et al., “Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12531–12535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Lavalle, C. Gergely, F. J. G. Cuisinier et al., “Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study,” Macromolecules, vol. 35, no. 11, pp. 4458–4465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Richert, P. Lavalle, E. Payan et al., “Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects,” Langmuir, vol. 20, no. 2, pp. 448–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Kujawa, P. Moraille, J. Sanchez, A. Badia, and F. M. Winnik, “Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: a surface plasmon resonance spectroscopy and atomic force microscopy investigation,” Journal of the American Chemical Society, vol. 127, no. 25, pp. 9224–9234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Boulmedais, V. Ball, P. Schwinte, B. Frisch, P. Schaaf, and J. C. Voegel, “Buildup of exponentially growing multilayer polypeptide films with internal secondary structure,” Langmuir, vol. 19, no. 2, pp. 440–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Lavalle, J. C. Voegel, D. Vautier, B. Senger, P. Schaaf, and V. Ball, “Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials,” Advanced Materials, vol. 23, no. 10, pp. 1191–1221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Ribéreau-Gayon, Handbook of Enology : The Chemistry of Wine Stabilization and Treatments, vol. 2, John Wiley & Sons, 2nd edition, 2000.
  31. A. E. Hagerman, M. E. Rice, and N. T. Ritchard, “Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4→8) catechin (procyanidin),” Journal of Agricultural and Food Chemistry, vol. 46, no. 7, pp. 2590–2595, 1998. View at Scopus
  32. C. Simon, K. Barathieu, M. Laguerre et al., “Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach,” Biochemistry, vol. 42, no. 35, pp. 10385–10395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. N. C. De Souza, M. Ferreira, K. Wohnrath, J. R. Silva, O. N. Oliveira Jr., and J. A. Giacometti, “Morphological characterization of Langmuir-Blodgett films from polyaniline and a ruthenium complex (Rupy): influence of the relative concentration of Rupy,” Nanotechnology, vol. 18, no. 7, Article ID 075713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. I. G. Roussis, I. Lambropulos, and K. Soulti, “Scavenging capacities of some wines and wine phenolic extracts,” Food Technology and Biotechnology, vol. 43, no. 3, pp. 351–358, 2005.
  36. C. Papadopoulou, K. Soulti, and I. G. Roussis, “Potential antimicrobial activity of red and white wine phenolic extracts against strains of staphylococcus aureus, escherichia coli and Candida albicans,” Food Technology and Biotechnology, vol. 43, no. 1, pp. 41–46, 2005. View at Scopus
  37. A. L. Lehninger, Princípios De Bioquímica, Sarvier, 3rd edition, 2002.
  38. C. Porcel, P. Lavalle, V. Ball et al., “From exponential to linear growth in polyelectrolyte multilayers,” Langmuir, vol. 22, no. 9, pp. 4376–4383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Guzmán, R. Chuliá-Jordán, F. Ortega, and R. G. Rubio, “Influence of the percentage of acetylation on the assembly of LbL multilayers of poly(acrylic acid) and chitosan,” Physical Chemistry Chemical Physics, vol. 13, pp. 18200–18207, 2011. View at Publisher · View at Google Scholar
  40. C. Peng, Y. S. Thio, R. A. Gerhardt, H. Ambaye, and V. Lauter, “pH-promoted exponential layer-by-layer assembly of bicomponent polyelectrolyte/nanoparticle multilayers,” Chemistry of Materials, vol. 23, pp. 4548–4556, 2011. View at Publisher · View at Google Scholar
  41. P. Bieker and M. Schönhoff, “Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH,” Macromolecules, vol. 43, pp. 5052–5059, 2010. View at Publisher · View at Google Scholar
  42. D. T. Haynie, E. Cho, and P. Waduge, “‘In and out diffusion’ hypothesis of exponential multilayer film buildup revisited,” Langmuir, vol. 27, no. 9, pp. 5700–5704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, UK, 1995.
  44. R. C. Salvarezza, L. Vázquez, P. Herrasti, P. Ocón, J. M. Vara, and A. J. Arvia, “Self-affine fractal vapour-deposited gold surfaces characterization by scanning tunnelling microscopy,” Europhysics Letters, vol. 20, no. 8, article 727, 1992. View at Publisher · View at Google Scholar
  45. P. Keblinski, A. Maritan, F. Toigo, R. Messier, and J. R. Banavar, “Continuum model for the growth of interfaces,” Physical Review E, vol. 53, no. 1, pp. 759–778, 1996. View at Scopus
  46. A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. G. Bukiet, “Columnar growth in thin films,” Physical Review Letters, vol. 60, no. 5, pp. 424–427, 1988. View at Publisher · View at Google Scholar · View at Scopus
  47. D. M. Aurongzeb, “Nonlinearities in sedimentation: a microscopic study,” Solid State Communications, vol. 134, no. 3, pp. 165–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Oguey and N. Rivier, “Roughness and scaling in cellular patterns: analysis of a simple model,” Journal of Physics A, vol. 34, no. 32, article 6225, 2001. View at Publisher · View at Google Scholar
  49. P. Neogi, “Length scales and roughness on a growing solid surface: a review,” Journal of Electroanalytical Chemistry, vol. 595, pp. 1–10, 2006. View at Publisher · View at Google Scholar
  50. N. Happo, M. Fujiwara, M. Iwamatsu, and K. Horii, “Atomic force microscopy study of self-affine fractal roughness of porous silicon surfaces,” Japanese Journal of Applied Physics, vol. 37, no. 7, pp. 3951–3953, 1998. View at Scopus
  51. A. E. Lita and J. E. Sanchez Jr., “Effects of grain growth on dynamic surface scaling during the deposition of Al polycrystalline thin films,” Physical Review B, vol. 61, pp. 7692–7699, 2000. View at Publisher · View at Google Scholar
  52. N. C. De Souza, V. Zucolotto, J. R. Silva et al., “Morphology characterization of layer-by-layer films from PAH/MA-co-DR13: the role of film thickness,” Journal of Colloid and Interface Science, vol. 285, no. 2, pp. 544–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Vázquez, J. M. Albella, R. C. Salvarezza, A. J. Arvia, R. A. Levy, and D. Perese, “Roughening kinetics of chemical vapor deposited copper films on Si(100),” Applied Physics Letters, vol. 68, no. 9, article 1285, 1996. View at Publisher · View at Google Scholar