About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 459325, 5 pages
http://dx.doi.org/10.1155/2013/459325
Research Article

Improved Antireflection Properties of an Optical Film Surface with Mixing Conical Subwavelength Structures

1Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
2Institute of Opto-Mechatronics Engineering, National Central University, Jhongli, Taiwan
3Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

Received 7 December 2012; Accepted 28 February 2013

Academic Editor: Jian Wei

Copyright © 2013 Chi-Feng Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Based on finite difference time domain method, an optical film surface with mixing conical subwavelength structures is numerically investigated to improve antireflection property. The mixing conical subwavelength structure is combined with the pure periodic conical subwavelength structures and the added small conical structures in the gap between the pure periodic conical subwavelength structures. The antireflection properties of two types of subwavelength structures with different aspect ratios in spectral range of 400–800 nm are analyzed and compared. It is shown that, for the mixing type, the average reflectance is decreased and the variances of the reflectance are evidently smaller. When the added structure with a better aspect ratio exists, the average reflectance of the surface can be below 0.30%. Obviously, the antireflection properties of the optical film surface with mixing conical subwavelength structures can be improved.