About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 460870, 18 pages
http://dx.doi.org/10.1155/2013/460870
Review Article

Nanoporous Aluminium Oxide Membranes as Cell Interfaces

Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany

Received 23 November 2012; Accepted 4 January 2013

Academic Editor: Alexandru Vlad

Copyright © 2013 Dorothea Brüggemann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. E. J. Poinern, N. Ali, and D. Fawcett, “Progress in nano-engineered anodic aluminum oxide membrane development,” Materials, vol. 4, no. 3, pp. 487–526, 2011.
  2. C. J. Ingham, J. ter Maat, and W. M. de Vos, “Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology,” Biotechnology Advances, vol. 30, no. 5, pp. 1089–1099, 2012.
  3. E. Gultepe, D. Nagesha, S. Sridhar, and M. Amiji, “Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 305–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Attaluri, Z. Huang, A. Belwalkar, W. van Geertruyden, D. Gao, and W. Misiolek, “Evaluation of nano-porous alumina membranes for hemodialysis application,” ASAIO Journal, vol. 55, no. 3, pp. 217–223, 2009. View at Publisher · View at Google Scholar
  5. S. Lee, M. Park, H. S. Park et al., “A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter,” Lab on a Chip, vol. 11, no. 6, pp. 1049–1053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Huang, W. Zhang, J. Yu, and D. Gao, “Nanoporous alumina membranes for enhancing hemodialysis,” Journal of Medical Devices, vol. 1, no. 1, pp. 79–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Bhattacharya, A. Kisner, A. Offenhäusser, and B. Wolfrum, “Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures,” Beilstein Journal of Nanotechnology, vol. 2, no. 1, pp. 104–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kumeria, M. D. Kurkuri, K. R. Diener, L. Parkinson, and D. Losic, “Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells,” Biosensors and Bioelectronics, vol. 35, no. 1, pp. 167–173, 2012.
  9. F. Tan, P. H. M. Leung, Z.-B. Liu, et al., “A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane,” Sensors and Actuators B, vol. 159, no. 1, pp. 328–335, 2011.
  10. A. Kisner, R. Stockmann, M. Jansen, et al., “Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors,” Biosensors & Bioelectronics, vol. 31, no. 1, pp. 157–163, 2012.
  11. J. Yu, Z. Liu, M. Yang, and A. Mak, “Nanoporous membrane-based cell chip for the study of anti-cancer drug effect of retinoic acid with impedance spectroscopy,” Talanta, vol. 80, no. 1, pp. 189–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Heilmann, N. Teuscher, A. Kiesow, D. Janasek, and U. Spohn, “Nanoporous aluminum oxide as a novel support material for enzyme biosensors,” Journal of Nanoscience and Nanotechnology, vol. 3, no. 5, pp. 375–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. E. P. Briggs, A. R. Walpole, P. R. Wilshaw, M. Karlsson, and E. Pålsgård, “Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating,” Journal of Materials Science: Materials in Medicine, vol. 15, no. 9, pp. 1021–1029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Walpole, E. P. Briggs, M. Karlsson, E. Pålsgård, and P. R. Wilshaw, “Nano-porous alumina coatings for improved bone implant interfaces,” Materialwissenschaft und Werkstofftechnik, vol. 34, no. 12, pp. 1064–1068, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Sawitowski, W. Brandau, A. Fischer, A. Heilmann, and G. Schmid, “Nanoporous alumina coatings for medical implants and stents—radiotherapy, drug delivery, biological compatibility,” MRS Proceedings, vol. 581, pp. 523–528, 1999. View at Publisher · View at Google Scholar
  16. H. Wieneke, O. Dirsch, T. Sawitowski et al., “Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits,” Catheterization and Cardiovascular Interventions, vol. 60, no. 3, pp. 399–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Gong, V. Yadavalli, M. Paulose, M. Pishko, and C. A. Grimes, “Controlled molecular release using nanoporous alumina capsules,” Biomedical Microdevices, vol. 5, no. 1, pp. 75–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Noh, K. S. Brammer, C. Choi, et al., “A new nano-platform for drug release via nanotubular aluminum oxide,” Journal of Biomaterials and Nanobiotechnology, vol. 2, no. 3, pp. 226–233, 2011.
  19. L. Li, Z. Z. Zhou, Z. Li, and C. X. Wu, “Controlled drug release using nanoporous alumina capsules,” Key Engineering Materials, vol. 361–363, pp. 1223–1226, 2008. View at Scopus
  20. L. G. Parkinson, N. L. Giles, K. F. Adcroft, M. W. Fear, F. M. Wood, and G. E. Poinern, “The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair,” Tissue Engineering—Part A, vol. 15, no. 12, pp. 3753–3763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, and Z. T. Jiang, “Nanoengineering a biocompatible inorganic scaffold for skin wound healing,” Journal of Biomedical Nanotechnology, vol. 6, no. 5, pp. 497–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. E. J. Poinern, R. Shackleton, S. I. Mamun, and D. Fawcett, “Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 11–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Norman and T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 89–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Brüggemann, K. E. Michael, A. Wolfrum, and B. Offenhäusser, “Adhesion and survival of electrogenic cells on gold nanopillar array electrodes,” International Journal of Nano and Biomaterials, vol. 4, no. 2, pp. 108–127, 2012.
  25. D. Brüggemann, B. Wolfrum, V. Maybeck, Y. Mourzina, M. Jansen, and A. Offenhäusser, “Nanostructured gold microelectrodes for extracellular recording from electrogenic cells,” Nanotechnology, vol. 22, no. 26, pp. 265104–265110, 2011.
  26. V. A. Antohe, A. Radu, M. Mátéfi-Tempfli, et al., “Nanowire-templated microelectrodes for high-sensitivity pH detection,” Applied Physics Letters, vol. 94, no. 7, pp. 073118–073120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Diggle, T. C. Downie, and C. W. Goulding, “Anodic oxide films on aluminum,” Chemical Reviews, vol. 69, no. 3, pp. 365–405, 1969. View at Scopus
  28. J. P. O'Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proceedings of the Royal Society of London A, vol. 317, no. 1531, pp. 511–543, 1970. View at Publisher · View at Google Scholar
  29. G. D. Sulka, “Highly ordered anodic porous alumina formation by self-organized anodizing,” in Nanostructured Materials in Electrochemistry, A. Eftekhari, Ed., pp. 1–116, Wiley-VCH, Weinheim, Germany, 2008.
  30. D. Weber, Y. Mourzina, D. Brüggemann, and A. Offenhäusser, “Large-scale patterning of gold nanopillars in a porous anodic alumina template by replicating gold structures on a titanium barrier,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 2, pp. 1293–1296, 2011.
  31. S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, A. Vlad, V. Antohe, and L. Piraux, “Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques,” Journal of Materials Science: Materials in Electronics, vol. 20, no. 1, pp. S249–S254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. B. Zhou, G. Li, X. N. Sun et al., “Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces,” Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 88–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. E. Jones, S. A. Ditner, C. Freeman, C. J. Whitaker, and M. A. Lock, “Comparison of a new inorganic membrane filter (Anopore) with a track-etched polycarbonate membrane filter (Nuclepore) for direct counting of bacteria,” Applied and Environmental Microbiology, vol. 55, no. 2, pp. 529–530, 1989. View at Scopus
  34. A. Hoess, A. Thormann, A. Friedmann, and A. Heilmann, “Self-supporting nanoporous alumina membranes as substrates for hepatic cell cultures,” Journal of Biomedical Materials Research Part A, vol. 100, no. 9, pp. 2230–2238, 2012. View at Publisher · View at Google Scholar
  35. F. Haq, V. Anandan, C. Keith, and G. Zhang, “Neurite development in PC12 cells cultured on nanopillars and nanopores with sizes comparable with filopodia,” International Journal of Nanomedicine, vol. 2, no. 1, pp. 107–115, 2007.
  36. W. K. Cho, K. Kang, G. Kang, M. J. Jang, Y. Nam, and I. S. Choi, “Pitch-dependent acceleration of neurite outgrowth on nanostructured anodized aluminum oxide substrates,” Angewandte Chemie—International Edition, vol. 49, no. 52, pp. 10114–10118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Wolfrum, Y. Mourzina, F. Sommerhage, and A. Offenhäusser, “Suspended nanoporous membranes as interfaces for neuronal biohybrid systems,” Nano Letters, vol. 6, no. 3, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. H. D. Graham, C. R. Bowen, J. Taylor, and J. Robbins, “Neuronal cell biocompatibility and adhesion to modified CMOS electrodes,” Biomedical Microdevices, vol. 11, no. 5, pp. 1091–1101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. H. D. Graham, C. R. Bowen, J. Robbins, and J. Taylor, “Formation of a porous alumina electrode as a low-cost CMOS neuronal interface,” Sensors and Actuators B, vol. 138, no. 1, pp. 296–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Prasad and J. Quijano, “Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1219–1229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Karlsson, E. Pålsgård, P. R. Wilshaw, and L. di Silvio, “Initial in vitro interaction of osteoblasts with nano-porous alumina,” Biomaterials, vol. 24, no. 18, pp. 3039–3046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. R. Walpole, Z. Xia, C. W. Wilson, J. T. Triffitt, and P. R. Wilshaw, “A novel nano-porous alumina biomaterial with potential for loading with bioactive materials,” Journal of Biomedical Materials Research Part A, vol. 90A, no. 1, pp. 46–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. C. Popat, E. E. Leary Swan, V. Mukhatyar et al., “Influence of nanoporous alumina membranes on long-term osteoblast response,” Biomaterials, vol. 26, no. 22, pp. 4516–4522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. E. E. L. Swan, K. C. Popat, C. A. Grimes, and T. A. Desai, “Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture,” Journal of Biomedical Materials Research—Part A, vol. 72A, no. 3, pp. 288–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. E. E. Leary Swan, K. C. Popat, and T. A. Desai, “Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion,” Biomaterials, vol. 26, no. 14, pp. 1969–1976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. K. C. Popat, K. I. Chalvanichkul, G. L. Barnes, T. J. Latempa, C. A. Grimes, and T. A. Desai, “Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces,” Journal of Biomedical Materials Research—Part A, vol. 80A, no. 4, pp. 955–964, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Hu, J. H. Tian, J. Shi et al., “Cell culture on AAO nanoporous substrates with and without geometry constrains,” Microelectronic Engineering, vol. 88, no. 8, pp. 1714–1717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. J. Lee, D. N. Kim, S. Park, Y. Lee, and W. G. Koh, “Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates,” Acta Biomaterialia, vol. 7, no. 3, pp. 1281–1289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. K. E. La Flamme, K. C. Popat, L. Leoni et al., “Biocompatibility of nanoporous alumina membranes for immunoisolation,” Biomaterials, vol. 28, no. 16, pp. 2638–2645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Z.-J. Wu, L.-P. He, and Z.-Z. Chen, “Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 16, no. 2, pp. 125104–125110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Hu, J. H. Tian, J. Shi et al., “Cell culture on AAO nanoporous substrates with and without geometry constrains,” Microelectronic Engineering, vol. 88, no. 8, pp. 255101–255106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Takoh, A. Takahashi, T. Matsue, and M. Nishizawa, “A porous membrane-based microelectroanalytical technique for evaluating locally stimulated culture cells,” Analytica Chimica Acta, vol. 522, no. 1, pp. 45–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Ishibashi, K. Takoh, H. Kaji, T. Abe, and M. Nishizawa, “A porous membrane-based culture substrate for localized in situ electroporation of adherent mammalian cells,” Sensors and Actuators B, vol. 128, no. 1, pp. 5–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. Z.-B. Liu, Y. Zhang, J. J. Yu, A. F. T. Mak, Y. Li, and M. Yang, “A microfluidic chip with poly(ethylene glycol) hydrogel microarray on nanoporous alumina membrane for cell patterning and drug testing,” Sensors and Actuators B, vol. 143, no. 2, pp. 776–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. J. Narayan, S. P. Adiga, M. J. Pellin et al., “Atomic layer deposition-based functionalization of materials for medical and environmental health applications,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1917, pp. 2033–2064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. R. J. Narayan, N. A. Monteiro-Riviere, R. L. Brigmon, M. J. Pellin, and J. W. Elam, “Atomic layer deposition of TiO2 thin films on nanoporous alumina templates: medical applications,” JOM, vol. 61, no. 6, pp. 12–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Hoess, N. Teuscher, A. Thormann, H. Aurich, and A. Heilmann, “Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes,” Acta Biomaterialia, vol. 3, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. S. Hoess, A. Staeudte, A. Thormann, M. Steinhart, and A. Heilmann, “Production of highly ordered nanoporous alumina and its application in cell cultivation,” MRS Proceedings, vol. 1093, pp. CC04–CC16, 2008. View at Publisher · View at Google Scholar
  59. A. Friedmann, A. Hoess, A. Cismak, and A. Heilmann, “Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy,” Acta Biomaterialia, vol. 7, no. 6, pp. 2499–2507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Hoess, A. Thormann, A. Friedmann, H. Aurich, and A. Heilmann, “Co-cultures of primary cells on self-supporting nanoporous alumina membranes,” Advanced Engineering Materials, vol. 12, no. 7, pp. B269–B275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. K. E. La Flamme, G. Mor, D. Gong et al., “Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility,” Diabetes Technology and Therapeutics, vol. 7, no. 5, pp. 684–694, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. E. Orosz, S. Gupta, M. Hassink et al., “Delivery of antiangiogenic and antioxidant drugs of ophthalmic interest through a nanoporous inorganic filter,” Molecular Vision, vol. 10, no. 68, pp. 555–565, 2004. View at Scopus
  63. K. T. Nguyen, K. P. Shukla, M. Moctezuma, and T. Liping, “Cellular and molecular responses of smooth muscle cells to surface nanotopography,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 8, pp. 2823–2832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Ishibashi, Y. Hoshino, H. Kaji, M. Kanzaki, M. Sato, and M. Nishizawa, “Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate,” Biomedical Microdevices, vol. 11, no. 2, pp. 413–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Kaji, T. Ishibashi, K. Nagamine, M. Kanzaki, and M. Nishizawa, “Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness,” Biomaterials, vol. 31, no. 27, pp. 6981–6986, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Wesche, M. Hüske, A. Yakushenko, et al., “A nanoporous alumina microelectrode array for functional cell-chip coupling,” Nanotechnology, vol. 23, no. 49, pp. 495303–495311, 2012.
  67. M. Karlsson, A. Johansson, L. Tang, and M. Boman, “Nanoporous aluminum oxide affects neutrophil behaviour,” Microscopy Research and Technique, vol. 63, no. 5, pp. 259–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Karlsson and L. Tang, “Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina,” Journal of Materials Science: Materials in Medicine, vol. 17, no. 11, pp. 1101–1111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Ferraz, J. Hong, M. Santin, and M. K. Ott, “Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages,” International Journal of Biomaterials, vol. 2010, pp. 402715–402722, 2010. View at Publisher · View at Google Scholar
  70. N. Ferraz, J. Carlsson, J. Hong, and M. Karlsson Ott, “Influence of nanoporesize on platelet adhesion and activation,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 9, pp. 3115–3121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Ferraz, B. Nilsson, J. Hong, and M. Karlsson Ott, “Nanoporesize affects complement activation,” Journal of Biomedical Materials Research Part A, vol. 87, no. 3, pp. 575–581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Ferraz, J. Hong, and M. Karlsson Ott, “Procoagulant behavior and platelet microparticle generation on nanoporous alumina,” Journal of Biomaterials Applications, vol. 24, no. 8, pp. 675–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Ferraz, M. Karlsson Ott, and J. Hong, “Time sequence of blood activation by nanoporous alumina: studies on platelets and complement system,” Microscopy Research and Technique, vol. 73, no. 12, pp. 1101–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Ferraz, A. Hoess, A. Thormann, et al., “Role of alumina nanoporosity in acute cell response,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 8, pp. 6698–6704, 2011.
  75. P. Boutin, P. Christel, J. M. Dorlot et al., “The use of dense alumina-alumina ceramic combination in total hip replacement,” Journal of Biomedical Materials Research, vol. 22, no. 12, pp. 1203–1232, 1988. View at Scopus
  76. T. Traykova, C. Aparicio, M. P. Ginebra, and J. A. Planell, “Bioceramics as nanomaterials,” Nanomedicine, vol. 1, no. 1, pp. 91–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Tateiwa, I. C. Clarke, P. A. Williams et al., “Ceramic total hip arthroplasty in the United States: safety and risk issues revisited,” American Journal of Orthopedics, vol. 37, no. 2, pp. E26–E31, 2008. View at Scopus
  78. Z.-J. Wu, L.-P. He, and Z.-Z. Chen, “Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium,” Transactions of Nonferrous Metals Society of China, vol. 16, no. 2, pp. 259–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. C. J. Ingham, A. Sprenkels, J. Bomer et al., “The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18217–18222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. S. A. Skoog, M. R. Bayati, P. E. Petrochenko, et al., “Antibacterial activity of zinc oxide-coated nanoporous alumina,” Materials Science and Engineering B, vol. 177, no. 12, pp. e33818–e33825, 2012.
  81. C. Ingham, J. Bomer, A. D. Sprenkels, A. van Den Berg, W. de Vos, and J. van Hylckama Vlieg, “High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide,” Lab on a Chip, vol. 10, no. 11, pp. 1410–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. C. J. Ingham, S. Boonstra, S. Levels, M. de Lange, J. F. Meis, and P. M. Schneeberger, “Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide,” PLoS One, vol. 7, no. 3, Article ID e33818, 2012. View at Publisher · View at Google Scholar
  83. S. A. Skoog, M. R. Bayati, P. E. Petrochenko, et al., “Antibacterial activity of zinc oxide-coated nanoporous alumina,” Materials Science and Engineering B, vol. 177, no. 12, pp. 992–998, 2012.
  84. J.-M. Moon, D. Akin, Y. Xuan, P. D. Ye, P. Guo, and R. Bashir, “Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes,” Biomedical Microdevices, vol. 11, no. 1, pp. 135–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Zhang, H. He, C. Yen, W. Ho, and L. J. Lee, “A biodegradable, immunoprotective, dual nanoporous capsule for cell-based therapies,” Biomaterials, vol. 29, no. 31, pp. 4253–4259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Darder, P. Aranda, M. Hernández-Vélez, E. Manova, and E. Ruiz-Hitzky, “Encapsulation of enzymes in alumina membranes of controlled pore size,” Thin Solid Films, vol. 495, no. 1-2, pp. 321–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Wieneke, T. Sawitowski, S. Wnendt, et al., “Stent coating: a new approach in interventional cardiology,” Herz, vol. 27, no. 6, pp. 518–526, 2002.