About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 471210, 7 pages
http://dx.doi.org/10.1155/2013/471210
Research Article

Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

1Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
2National Research Center, Dokki, Cairo, Egypt

Received 30 December 2012; Revised 1 February 2013; Accepted 6 March 2013

Academic Editor: Tianxi Liu

Copyright © 2013 Samia A. Kosa and Eman Z. Hegazy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. H. Eman, Evaluation and recycling of metals from spent catalyst due to hydrotreating process [M.S. thesis], Tanta University, Tanta, Egypt, 2003.
  2. D. Mishra, G. R. Chaudhury, D. J. Kim, and J. G. Ahn, “Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique,” Hydrometallurgy, vol. 101, no. 1-2, pp. 35–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. K. Parhi, K. H. Park, H. I. Kim, and J. T. Park, “Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I,” Hydrometallurgy, vol. 105, no. 3-4, pp. 195–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. B. B. Kar, P. Datta, and V. N. Misra, “Spent catalyst: secondary source for molybdenum recovery,” Hydrometallurgy, vol. 72, no. 1-2, pp. 87–92, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. H. Park, D. Mohapatra, and C. W. Nam, “Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272,” Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 287–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Gholami, S. M. Borghei, and S. M. Mousavi, “Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans,” Hydrometallurgy, vol. 106, no. 1-2, pp. 26–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, and Y. H. Rhee, “Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs,” Hydrometallurgy, vol. 88, no. 1–4, pp. 202–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Pradhan, J. G. Ahn, D. J. Kim, and S. W. Lee, “Effect of Ni+2, V+4, and Mo+6 concentrations on iron oxidation by Acidithiobacillus ferrooxidnas,” Korean Journal of Chemical Engineering, vol. 26, pp. 736–741, 2009.
  9. D. Pradhan, D. Mishra, D. J. Kim, J. G. Ahn, G. R. Chaudhury, and S. W. Lee, “Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles,” Journal of Hazardous Materials, vol. 175, pp. 267–273, 2010. View at Publisher · View at Google Scholar
  10. L. Zeng and C. Y. Cheng, “A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Part I: metallurgical processes,” Hydrometallurgy, vol. 98, no. 1-2, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. M. Pasquariello, R. Kershaw, J. D. Passaretti, K. Dwight, and A. Wold, “Low-temperature synthesis and properties of Co9S8, Ni3S2, and Fe7S8,” Inorganic Chemistry, vol. 23, no. 7, pp. 872–874, 1984. View at Scopus
  12. S. Miyazaki, M. Shirai, and N. Suzuki, “Electronic band structure of antiferromagnetic spinel Co3S4,” Journal of Magnetism and Magnetic Materials, vol. 177–181, no. 2, pp. 1367–1368, 1998. View at Scopus
  13. E. Hillerova and C. Czech, “Activity and selectivity of carbon-supported transition metal sulfides in simultaneous hydrodearomatization and hydrodesulfurization,” Collection of Czechoslovak Chemical Communications, vol. 54, pp. 2648–2656, 1989. View at Publisher · View at Google Scholar
  14. J. P. Ge and Y. D. Li, “Controllable CVD route to CoS and MnS single-crystal nanowiresf,” Chemical Communications, vol. 9, no. 19, pp. 2498–2499, 2003. View at Scopus
  15. H. Emadi, M. Salavati-Niasari, and F. Davar, “Synthesis and characterization of cobalt sulfide nanocrystals in the presence of thioglycolic acid via a simple hydrothermal method,” Polyhedron, vol. 31, pp. 438–442, 2012.
  16. P. Barret, J. C. Closon, and D. Delefosse, Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C, vol. 262, p. 83, 1966.
  17. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki, “Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor,” Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 199–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Salavati-Niasari, A. Sobhani, and F. Davar, “Synthesis of star-shaped PbS nanocrystals using single-source precursor,” Journal of Alloys and Compounds, vol. 507, no. 1, pp. 77–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki, “Long chain polymer assisted synthesis of flower-like cadmium sulfide nanorods via hydrothermal process,” Journal of Alloys and Compounds, vol. 481, no. 1-2, pp. 776–780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Salavati-Niasari, D. Ghanbari, and F. Davar, “Synthesis of different morphologies of bismuth sulfide nanostructures via hydrothermal process in the presence of thioglycolic acid,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. 442–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar, “Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid,” Chemical Engineering Journal, vol. 145, no. 2, pp. 346–350, 2008.
  22. X. F. Qian, X. M. Zhang, C. Wang, Y. Xie, and Y. T. Qian, “The preparation and phase transformation of nanocrystalline Cobalt sulfides via a toluene thermal process,” Inorganic Chemistry, vol. 38, pp. 2621–2623, 1999. View at Publisher · View at Google Scholar
  23. J. H. Zhan, Y. Xie, X. G. Yang, W. X. Zhang, and Y. T. Qian, “Hydrazine-assisted low-temperature hydrothermal preparation of nanocrystalline Jaipurite,” Journal of Solid State Chemistry, vol. 146, no. 1, pp. 36–38, 1999. View at Scopus
  24. F. Ackermann, G. Berrebi, P. Dufresne, A. Van Lierde, and M. Foguenne, “French Patent EP 555128A1 930811,” 1994.