About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 478942, 7 pages
http://dx.doi.org/10.1155/2013/478942
Research Article

Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nanorods

1Nano Biochip Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
2Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Electronic Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan

Received 18 November 2012; Accepted 3 February 2013

Academic Editor: Ping Xiao

Copyright © 2013 M. Kashif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Sun, Q. Dai, F. Liu et al., “The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response,” Science China Physics, Mechanics and Astronomy, vol. 54, no. 1, pp. 102–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W. I. Park, J. S. Kim, G.-C. Yi, M. H. Bae, and H. J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors,” Applied Physics Letters, vol. 85, no. 21, pp. 5052–5054, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Logothetidis, A. Laskarakis, S. Kassavetis, S. Lousinian, C. Gravalidis, and G. Kiriakidis, “Optical and structural properties of ZnO for transparent electronics,” Thin Solid Films, vol. 516, no. 7, pp. 1345–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Fang, Y. Bando, U. K. Gautam et al., “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Critical Reviews in Solid State and Materials Sciences, vol. 34, no. 3-4, pp. 190–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-L. Hsu and K.-C. Chen, “Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency,” The Journal of Physical Chemistry C, vol. 116, no. 16, pp. 9351–9355, 2012.
  6. E. Mollow, Proceedings of the Conference on Photoconductivity, John Wiley & Sons, New York, NY, USA, 1956.
  7. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” Journal of Crystal Growth, vol. 225, no. 2–4, pp. 110–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Seager and S. M. Myers, “Quantitative comparisons of dissolved hydrogen density and the electrical and optical properties of ZnO,” Journal of Applied Physics, vol. 94, no. 5, pp. 2888–2894, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Koida, S. F. Chichibu, A. Uedono et al., “Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO,” Applied Physics Letters, vol. 82, no. 4, pp. 532–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Sharma, K. Sreenivas, and K. V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, vol. 93, no. 7, pp. 3963–3970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Basak, G. Amin, B. Mallik, G. K. Paul, and S. K. Sen, “Photoconductive UV detectors on sol-gel-synthesized ZnO films,” Journal of Crystal Growth, vol. 256, no. 1-2, pp. 73–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of ultrathin zinc oxide films,” Japanese Journal of Applied Physics, vol. 33, pp. 6611–6615, 1994.
  13. T. E. Murphy, K. Moazzami, and J. D. Phillips, “Trap-related photoconductivity in ZnO epilayers,” Journal of Electronic Materials, vol. 35, no. 4, pp. 543–549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. H. Zhang and D. E. Brodie, “Photoresponse of polycrystalline ZnO films deposited by r.f. bias sputtering,” Thin Solid Films, vol. 261, no. 1-2, pp. 334–339, 1995. View at Scopus
  15. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Applied Physics Letters, vol. 86, no. 12, Article ID 123117, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Soci, A. Zhang, B. Xiang et al., “ZnO nanowire UV photodetectors with high internal gain,” Nano Letters, vol. 7, no. 4, pp. 1003–1009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nature Materials, vol. 10, no. 8, pp. 596–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Xu, B.-S. Kim, J.-H. Lee et al., “Seed-free electrochemical growth of ZnO nanotube arrays on single-layer graphene,” Materials Letters, vol. 72, no. 1, pp. 25–28, 2012.
  19. X. Wu, F. Qu, X. Zhang, W. Cai, and G. Shen, “Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. L13–L16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Khan, S. N. Khan, and W. M. Jadwisienczak, “One step growth of ZnO nano-tetrapods by simple thermal evaporation process: structural and optical properties,” Science of Advanced Materials, vol. 2, no. 4, pp. 572–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kashif, S. M. Usman Ali, M. E. Ali et al., “Morphological, optical, and Raman characteristics of ZnO nanoflakes prepared via a sol-gel method,” Physica Status Solidi (a), vol. 209, no. 1, pp. 143–147, 2012.
  22. D. A. Lamb and S. J. C. Irvine, “Growth properties of thin film ZnO deposited by MOCVD with n-butyl alcohol as the oxygen precursor,” Journal of Crystal Growth, vol. 273, no. 1-2, pp. 111–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. O. A. Fouad, A. A. Ismail, Z. I. Zaki, and R. M. Mohamed, “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity,” Applied Catalysis B, vol. 62, no. 1-2, pp. 144–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, “High-quality ZnO layers grown by MBE on sapphire,” Superlattices and Microstructures, vol. 38, no. 4–6, pp. 265–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Azaceta, R. Tena-Zaera, R. Marcilla et al., “Electrochemical deposition of ZnO in a room temperature ionic liquid: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethane sulfonyl)imide,” Electrochemistry Communications, vol. 11, no. 11, pp. 2184–2186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, and A. Mere, “Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array,” Solar Energy Materials and Solar Cells, vol. 92, no. 9, pp. 1016–1019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kashif, U. Hashim, M. E. Ali et al., “Effect of different seed solutions on the morphology and electrooptical properties of ZnO nanorods,” Journal of Nanomaterials, vol. 2012, Article ID 452407, 6 pages, 2012. View at Publisher · View at Google Scholar
  28. T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, “ZnO MSM photodetectors with Ru contact electrodes,” Journal of Crystal Growth, vol. 281, no. 2–4, pp. 513–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kang, J. S. Lee, S. K. Sim et al., “Photocurrent and photoluminescence characteristics of networked GaN nanowires,” Japanese Journal of Applied Physics, Part 1, vol. 43, no. 10, pp. 6868–6872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-E. Ahn, H. J. Ji, K. Kim et al., “Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire,” Applied Physics Letters, vol. 90, no. 15, Article ID 153106, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Applied Physics Letters, vol. 94, no. 2, Article ID 023110, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. L. Chang, M.-C. Park, Q. Kuang et al., “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” Journal of the American Chemical Society, vol. 129, no. 40, pp. 12096–12097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. S. Aga, D. Jowhar, A. Ueda et al., “Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot,” Applied Physics Letters, vol. 91, no. 23, Article ID 232108, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Keem, H. Kim, G. T. Kim et al., “Photocurrent in ZnO nanowires grown from Au electrodes,” Applied Physics Letters, vol. 84, no. 22, pp. 4376–4378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Lupan, T. Pauporté, L. Chow et al., “Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium,” Applied Surface Science, vol. 256, no. 6, pp. 1895–1907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Li, X. C. Li, P. X. Yan et al., “Research on the properties of ZnO thin films deposited by using filtered cathodic arc plasma technique on glass substrate under different flow rate of O2,” Applied Surface Science, vol. 253, no. 8, pp. 4000–4005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Senthilkumaar, K. Rajendran, S. Banerjee, T. K. Chini, and V. Sengodan, “Influence of Mn doping on the microstructure and optical property of ZnO,” Materials Science in Semiconductor Processing, vol. 11, no. 1, pp. 6–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. “American society for testing and material, powder diffraction files, joint committee on powder diffraction standards,” swarthmore, Philadelphia, Pa, USA, 1996.
  39. S. C. Lyu, Y. Zhang, H. Ruh et al., “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires,” Chemical Physics Letters, vol. 363, no. 1-2, pp. 134–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. C. Kim, J. H. Je, D. W. Kim, H. K. Baik, S. M. Lee, and P. Ruterana, “Annealing behavior of Pd/GaN (0001) microstructure,” Materials Science and Engineering B, vol. 82, no. 1–3, pp. 105–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proceedings to the Physical Society B, vol. 63, no. 3, article 302, pp. 167–176, 1950. View at Publisher · View at Google Scholar · View at Scopus
  42. V. P. Gupta and N. M. Ravindra, “Comments on the Moss Formula,” Physica Status Solidi (b), vol. 100, no. 2, pp. 715–719, 1980. View at Scopus
  43. Y. Al-Douri, Y. P. Feng, and A. C. H. Huan, “Optical investigations using ultra-soft pseudopotential calculations of Si0.5Ge0.5 alloy,” Solid State Communications, vol. 148, no. 11-12, pp. 521–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Al-Douri, A. H. Reshak, H. Baaziz et al., “An ab initio study of the electronic structure and optical properties of CdS1−xTex alloys,” Solar Energy, vol. 84, no. 12, pp. 1979–1984, 2010.
  45. P. Hervé and L. K. J. Vandamme, “General relation between refractive index and energy gap in semiconductors,” Infrared Physics and Technology, vol. 35, no. 4, pp. 609–615, 1994. View at Scopus
  46. N. M. Ravindra, S. Auluck, and V. K. Srivastava, “On the penn gap in semiconductors,” Physica Status Solidi (b), vol. 93, no. 2, pp. K155–K160, 1979.
  47. P. J. L. Hervé and L. K. J. Vandamme, “Empirical temperature dependence of the refractive index of semiconductors,” Journal of Applied Physics, vol. 77, no. 10, pp. 5476–5477, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. D. K. Ghosh, L. K. Samanta, and G. C. Bhar, “A simple model for evaluation of refractive indices of some binary and ternary mixed crystals,” Infrared Physics, vol. 24, no. 1, pp. 43–47, 1984. View at Scopus
  49. K. Hüemmer, “Interband magnetoreflection of ZnO,” Physica Status Solidi (b), vol. 56, no. 1, pp. 249–260, 1973. View at Scopus
  50. Z. Charifi, H. Baaziz, and A. H. Reshak, “Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound,” Physica Status Solidi (b), vol. 244, no. 9, pp. 3154–3167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Schleife, F. Fuchs, J. Furthmüller, and F. Bechstedt, “First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs,” Physical Review B, vol. 73, no. 24, Article ID 245212, 14 pages, 2006.
  52. Y.-N. Xu and W. Y. Ching, “Electronic, optical, and structural properties of some wurtzite crystals,” Physical Review B, vol. 48, no. 7, pp. 4335–4351, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Schröer, P. Krüger, and J. Pollmann, “First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS,” Physical Review B, vol. 47, no. 12, pp. 6971–6980, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Ilican, M. Caglar, and Y. Caglar, “Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films,” Applied Surface Science, vol. 256, no. 23, pp. 7204–7210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. R. Penn, “Wave-number-dependent dielectric function of semiconductors,” Physical Review, vol. 128, no. 5, pp. 2093–2097, 1962. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. van Vechten, “Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant,” Physical Review, vol. 182, no. 3, pp. 891–905, 1969. View at Publisher · View at Google Scholar · View at Scopus
  57. G. A. Samara, “Temperature and pressure dependences of the dielectric constants of semiconductors,” Physical Review B, vol. 27, no. 6, pp. 3494–3505, 1983. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Kashif, U. Hashim, M. E. Ali, A. A. Saif, M. U. Syed Ali, and M. Willander, “Structural and impedance spectroscopy study of Al-doped ZnO nanorods grown by sol-gel method,” Microelectronics International, vol. 29, no. 3, pp. 131–135, 2012.
  59. F. E. Jones, B. P. Wood, J. A. Myers, C. Daniels-Hafer, and M. C. Lonergan, “Current transport and the role of barrier inhomogeneities at the high barrier n-InP ∣ poly(pyrrole) interface,” Journal of Applied Physics, vol. 86, no. 11, pp. 6431–6441, 1999. View at Scopus
  60. Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J.-J. C. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging,” Nanotechnology, vol. 20, no. 4, pp. 045501–045504, 2009. View at Publisher · View at Google Scholar
  61. M. Mehrabian, R. Azimirad, K. Mirabbaszadeh, H. Afarideh, and M. Davoudian, “UV detecting properties of hydrothermal synthesized ZnO nanorods,” Physica E, vol. 43, no. 6, pp. 1141–1145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Y. Liu, B. P. Zhang, Z. W. Lu et al., “Fabrication and characterization of ZnO film based UV photodetector,” Journal of Materials Science, vol. 20, no. 3, pp. 197–201, 2009. View at Publisher · View at Google Scholar · View at Scopus